На правах рукописи

СМИРНОВ Алексей Александрович

ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ В НЕРАВНОВЕСНОЙ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЕ HBr И ЕГО СМЕСЕЙ С АРГОНОМ, ГЕЛИЕМ И ВОДОРОДОМ

02.00.04 – Физическая химия

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Иваново 2010

Работа выполнена в ГОУ ВПО «Ивановский государственный химикотехнологический университет».

Научный руководитель:	доктор химических наук, профессор Ефремов Александр Михайлович
Официальные оппоненты:	доктор физико-математических наук, профессор Бутман Михаил Федорович доктор физико-математических наук, старший научный сотрудник Руденко Константин Васильевич
Ведущая организация:	Ярославский государственный университет им. П. Г. Демидова, г. Ярославль

Защита состоится «13» декабря 2010 г. в 10-00 на заседании совета по защите докторских и кандидатских диссертаций Д 212.063.06 при ГОУ ВПО «Ивановский государственный химико-технологический университет» по адресу: 153000, г. Иваново, пр. Ф. Энгельса, 7, ауд. Г–205.

тел.: (4932) 32-54-33, факс: (4932) 32-54-33, e-mail: dissovet@isuct.ru

С диссертацией можно ознакомиться в библиотеке ГОУ ВПО «Ивановский государственный химико-технологический университет» по адресу: 153000, г. Иваново, пр. Ф. Энгельса, 10.

Автореферат разослан «_____» ____ 2010 г.

Ученый секретарь совета по защите докторских и кандидатских диссертаций Д 212.063.06

Егорова Е.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы.</u> Технологические процессы с использованием неравновесной низкотемпературной газоразрядной плазмы широко используются в производстве изделий микро- и наноэлектроники при очистке поверхности полупроводниковых пластин, нанесении функциональных слоев и их размерном травлении. Постоянно возрастающие требования по выходным характеристикам целевых процессов (скорость, селективность, анизотропия и др.) обуславливают необходимость оптимизации существующих и разработку новых плазменных технологий. Решение таких задач невозможно без глубокого научного исследования механизмов физико-химических процессов, определяющих стационарные параметры и состав плазмы.

Одним из ключевых процессов в технологии современных интегральных микросхем (ИМС) является плазменное травление (ПТ). В технологии ПТ классической надмикронной кремниевой электроники доминировала плазма фторсодержащих газов, которая обеспечивала приемлемые на тот момент времени характеристики ПТ кремния, SiO₂, Si₃N₄, а также ряда металлов (Ti, W и др.). Применение фторсодержащей плазмы при производстве ИМС с субмикронными размерами и высокими степенями интеграции элементов ограничено рядом существенных проблем, таких как: 1) низкая анизотропия травления кремнийсодержащих соединений; 2) высаживание углеродсодержащих полимерных пленок на поверхностях, контактирующих с плазмой; 3) невозможность травления широкого круга металлов (Cu, Al, Au, Pt) и полупроводников (GaAs, Al-GaAs InP, InGaP), образующих нелетучие соединения с фтором. Последний недостаток делает невозможным применение фторсодержащей плазмы не только в субмикронной кремниевой электронике, но и при производстве приборов на основе полупроводников группы $A^{III}B^{V}$.

В настоящее время большое внимание специалистов в области ПТ уделяется галогенводородам НХ (X=Cl,Br,I). Достоинствами галогенводородов являются отсутствие полимеризационных явлений, низкие (по сравнению с плазмой молекулярных галогенов) степени диссоциации, обеспечивающие преимущество в анизотропии и селективности процесса, а также лучшие равномерность и чистота обработки поверхности. В частности, плазма чистого HBr и смесей HBr-Ar, Не демонстрирует высокую анизотропию ПТ моно- и поликристаллического Si, а также высокую селективность процесса по отношению к SiO₂, Si₃N₄ и органическим фоторезистам. Смеси HBr-H₂ используются для анизотропного ПТ GaAs, AlGaAs и InP, где добавка H₂ снижает шероховатость и способствует сохранению стехиометрического состава обрабатываемой поверхности. Кроме этого, плазма HBr имеет преимущество при ПТ меди, позволяя проводить процесс при менее высоких температурах и обеспечивая тем самым существенное увеличение стойкости фоторезистивных масок. Все это делает HBr весьма перспективным газом для современной технологии ПТ.

Практически все технологические реализации ПТ с участием HBrсодержащей плазмы основываются только на эмпирическом материале. Это связано со слабой изученностью механизмов физико-химических процессов, формирующих стационарные параметры и состав плазмы HBr и, как следствие, с невозможностью установления однозначных взаимосвязей между внешними (задаваемыми) параметрами плазмы, ее внутренними характеристиками и параметрами целевого процесса. Очевидно, что такая ситуация не обеспечивает оптимальных режимов проведения ПТ и не определяет путей и критериев поиска оптимальности.

Цель работы. Анализ закономерностей и механизмов физико-химических процессов, формирующих стационарные параметры и состав неравновесной низкотемпературной плазмы HBr и его смесей с инертными (Ar, He) и молекулярными (H₂) газами.

Исследования проводились по следующим основным направлениям:

- Формирование кинетических схем (наборов реакций, соответствующих сечений и кинетических коэффициентов), обеспечивающих адекватное описание закономерностей физико-химических процессов образования и гибели нейтральных и заряженных частиц в плазме HBr и бинарных смесей HBr-Ar, He, H₂.
- 2) Расчеты функции распределения электронов по энергиям (ФРЭЭ), интегральных характеристик электронного газа и коэффициентов скоростей процессов при электронном ударе. Анализ механизмов образования и гибели активных частиц, расчеты стационарного состава плазмы и плотностей потоков активных частиц на поверхность, ограничивающую зону плазмы.

<u>Научная новизна работы.</u> При выполнении работы были получены следующие новые данные и результаты:

- 1) Сформирован набор сечений процессов под действием электронного удара для молекулы HBr и проведена его оптимизация на основе сравнения расчетных значений скорости дрейфа и характеристической энергии электронов с данными независимых литературных источников.
- 2) Впервые предложена полная кинетическая схема (набор реакций, сечений и кинетических коэффициентов) для описания закономерностей физикохимических процессов образования и гибели заряженных частиц и стационарного состава плазмы HBr. С целью оценки адекватности кинетической схемы проведен сравнительный анализ электрофизических параметров плазмы HBr и HCl с привлечением данных диагностики (приведенная напряженность электрического поля *E*/*N*, плотность потока ионов Γ₊) последней.
- 3) Впервые проведено детальное исследование электрофизических параметров, стационарного состава и кинетики процессов образования-гибели нейтральных и заряженных частиц в плазме НВг в условиях тлеющего разряда постоянного тока. Найдено, что баланс нейтральных частиц в значительной степени формируется атомно-молекулярными процессами. Показано, что прилипание электронов к HBr_{V>0} не оказывает определяющего влияния на кинетику процессов образования-гибели заряженных частиц.

4) Впервые проведено детальное исследование электрофизических параметров, стационарного состава и кинетики процессов образования-гибели нейтральных и заряженных частиц в плазме бинарных смесей HBr–Ar, He, H₂ переменного состава. Установлено, что отсутствие корреляции между изменением *E/N* и средней энергией электронов при варьировании начального состава смесей связано с неаддитивным перераспределением каналов потери энергии электронов в неупругих соударениях. Найдено, что разбавление HBr водородом не сопровождается принципиальными изменениями кинетики атомно-молекулярных процессов. Показано, что рост степеней диссоциации молекул в смесях HBr–Ar, He обусловлен ростом эффективности диссоциации электронным ударом из-за изменения электрофизических параметров плазмы.

Практическая значимость работы. Полученные результаты могут использоваться при разработке, автоматизации, оптимизации процессов плазмохимического травления, а также при анализе механизмов и построении моделей физико-химических процессов в неравновесной низкотемпературной плазме HBr и смесей на его основе.

<u>Личный вклад автора.</u> Работа выполнена на кафедре «Технология приборов и материалов электронной техники» (ТПиМЭТ) ГОУ ВПО «Ивановский государственный химико-технологический университет». Все расчетные результаты получены лично автором. Автор принимал непосредственное участие в формировании наборов входных данных для моделирования, а также в адаптации разработанных ранее на кафедре ТПиМЭТ алгоритмов моделирования плазмы и программного обеспечения к выбранным объектам исследований.

Апробация работы. Основные положения и выводы диссертационной работы докладывались на Международной конференции по микро- и наноэлектронике (ICMNE–2009) (Звенигород, 2009), IV Всероссийской конференции "Актуальные проблемы химии высоких энергий" (Москва, 2009) и на 19 Международном симпозиуме по плазмохимии (Бохум, Германия, 2009). Всего сделано 4 доклада.

Публикации. По теме диссертации опубликовано 10 работ, из них 4 тезисов докладов на конференциях, 6 статей в журналах перечня ВАК.

<u>Структура и объем работы.</u> Диссертационная работа состоит из введения, четырех глав, выводов и списка использованных литературных источников. Общий объем диссертации составляет 134 страницы, включая 60 рисунков и 22 таблицы. Список использованных источников содержит 170 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность исследования, сформулированы цели и основные задачи работы.

<u>В первой главе</u> рассмотрены основные свойства низкотемпературной газоразрядной плазмы, место и роль плазменных процессов в технологии интегральной микро- и наноэлектроники, а также типовые конструкции промышленных плазмохимических реакторов. Обобщены данные по кинетическим закономерностям и выходным характеристикам процессов травления металлов и полупроводников в плазме галогенводородов, в том числе – в плазме HBr и смесей на его основе. Проведен анализ литературных данных по механизмам образования и гибели нейтральных и заряженных частиц, кинетическим характеристикам (сечениям, константам скоростей, вероятностям) плазмохимических процессов в галогенводородах.

Результаты анализа литературных данных могут быть сформулированы в виде следующих положений:

- Плазма HBr имеет большие перспективы в технологи ПТ при производстве изделий микро- и наноэлектроники. Основными достоинствами этой системы являются высокая анизотропия травления моно- и поликристаллического Si, полупроводников группы A³B⁵, а также высокая селективность процесса по отношению к SiO₂, Si₃N₄ и органическим фоторезистам.
- 2) Технологических реализации ПТ с участием НВг-содержащей плазмы основываются, в основном, на эмпирическом материале, при этом наблюдаемые эффекты обработки материалов не находят объяснений с точки зрения механизмов процессов в системе «плазма-твердое тело». Это связано со слабой изученностью кинетики и механизмов плазмохимических процессов в HBr, и как следствие, с отсутствием надежных данных по стационарным параметрам и составу плазмы.
- 3) В семействе галогенводородов НХ (X=Cl, Br, I) наиболее изученной является плазма HCl, для которой сформирована полная кинетическая схема процессов (набор реакций, сечений и кинетических коэффициентов), проведен подробный анализ кинетики и механизмов образования и гибели активных частиц, показано хорошее согласие результатов моделирования и эксперимента. Для плазмы HBr исследования такого рода отсутствуют. Это делает невозможным установление взаимосвязей между внешними (задаваемыми) параметрами плазмы, ее внутренними характеристиками и составом.

На основании вышесказанного была сформулирована цель диссертационной работы.

Во второй главе приводится описание методики моделирования плазмы и анализ погрешностей основных расчетных параметров.

Моделирование плазмы проводилось в пятикомпонентном (HBr/H/ Br/H₂/Br₂) приближении по нейтральным невозбужденным частицам. Диапазон внешних параметров (давление газа p = 30-250 Па, ток разряда $i_p = 10-30$ мА) и геометрия реактора (радиус r = 0.9 см, длина зоны разряда l = 40 см) были выбраны аналогичными использованным в работе [1] при исследовании параметров и состава плазмы HCl. Алгоритм самосогласованного моделирования плазмы включал в себя совместное решение следующих уравнений:

1) Стационарного кинетического уравнения Больцмана в двучленном приближении (при записи интеграла столкновений учитывались только упругие и неупругие столкновения электронов с «тяжелыми» частицами). Решение проводилось с помощью конечно-разностной консервативной схемы, точность решения контролировалась по балансу энергии электронов.

- 2) Уравнения электропроводности плазмы $i_p = eE(n_e\mu_e + \sum n_i\mu_i)\pi r^2$, где E осевая напряженность электрического поля в плазме, $\mu = v_E/E$ подвижности частиц, v_E – скорость дрейфа, n – средние по объему концентрации.
- 3) Уравнений химической кинетики нейтральных невозбужденных и заряженных частиц в квазистационарном (dn/dt = 0) приближении $R_f - R_d = v_{het}n$, где R_f и R_d – средние скорости образования и гибели данного сорта частиц в объеме плазмы, а v_{het} – частота гетерогенной гибели. Частоты гетерогенной гибели атомов определялись в предположении о первом кинетическом порядке рекомбинации (механизм Или-Ридила). В расчетах были использованы литературные данные по вероятностям рекомбинации $\gamma_H \sim 8 \times 10^{-5}$ и $\gamma_{Br} \sim 6 \times 10^{-3}$, измеренным для плазмы H₂ и Br₂.
- 4) Уравнения химической кинетики $HBr_{V=1}$ в квазистационарном приближении. Полагалось, что образование $HBr_{V=1}$ происходит только в процессах электронного удара, а гибель гетерогенно и в V-T процессах. Величины эффективной колебательной температуры T_V и концентрации $HBr_{V>1}$ оценивались в предположении о больцмановском распределении молекул HBr по уровням колебательной энергии.
- 5) Условия квазинейтральности для концентраций заряженных частиц ($n_e + n_- = n_+$) и плотностей их потоков на поверхность, ограничивающую зону плазмы ($\Gamma_e = \Gamma_+$).
- 6) Кинетического уравнения образования и гибели электронов в приближении эффективного коэффициента диффузии. Выполнение баланса электронов определяло величину *E*/*N*, обеспечивающую поддержание стационарного состояния плазмы.

Выходными параметрами модели служили функция распределения электронов по энергиям (ФРЭЭ), интегральные характеристики электронного газа (средняя энергия, скорость дрейфа, приведенный коэффициент диффузии и подвижность), коэффициенты скоростей элементарных процессов, средние по объему плазмы концентрации частиц и плотности их потоков на поверхность.

<u>В третьей главе</u> рассмотрены вопросы формирования набора сечений процессов под действием электронного удара для молекулы HBr, разработки полной кинетической схемы (набора реакций, сечений и кинетических коэффициентов), а также приводятся результаты моделирования плазмы чистого HBr в условиях тлеющего разряда постоянного тока (p = 30-250 Па, $i_p = 10-30$ мА).

По результатам анализа литературных данных сформирован набор реакций для моделирования плазмы HBr, состоящий из 45 процессов, в том числе: 1) реакций под действием электронного удара для молекулярных (HBr, Br₂, H₂) и атомарных (H, Br) компонентов плазмы, 2) атомно-молекулярных реакций, 3) реакций объемной трехчастичной и гетерогенной рекомбинации атомов, 4) реакций объемной ион-ионной рекомбинации, 5) реакций гетерогенной гибели положительных ионов и электронов. Список процессов, оказывающих опреде-

ляющее влияние на формирование стационарных электрофизических параметров плазмы, приведен в табл. 1.

Существовавший до настоящего времени набор сечений элементарных процессов для молекулы НВг имел следующие недостатки: 1) малый диапазон энергий (0.25–10 эВ) для сечения передачи импульса; 2) отсутствие сечений вращательного возбуждения и ионизации. Последнее было аппроксимировано соответствующей зависимостью для HCl. Этот набор был дополнен нами уточненным сечением передачи импульса ($10^{-3}-10^3$ эВ), сечениями вращательного возбуждения v = 1-3 и сечением ионизации HBr. Полученный набор (рис. 1) обеспечивает удовлетворительное согласие расчетных данных по скорости дрейфа и характеристической энергии электронов (рис. 2) с данными независимых литературных источников.

Рис. 1. Сечения элементарных процессов для молекулы HBr: 1-передача импульса; 2вращательное возбуждение; 3, 4, 5колебательное возбуждение 0 \rightarrow 1, 2, 3; 6, 7, 8-диссоциативное электронное возбуждение $a^{3}\Pi$ (4.3 эВ), $A^{1}\Pi$ (6.0 эВ), $t^{3}\Sigma$ (9.3 эВ); 9диссоциативное прилипание к HBr_{V=0}; 10ионизация.

Рис. 2. Характеристическая энергия электронов в HBr (1-3, 5) и смеси 95%Ar+5%HBr (4, 6). Линии–наш расчет с использованием набора сечений из рис. 1, точки – литературные данные.

Сравнительный анализ электрофизических параметров плазмы HBr и HCl в однокомпонентом приближении позволяет сделать следующие выводы: 1) Максимальные различия ФРЭЭ в этих системах имеют место в области малых E/N (рис. 3), где основные каналы потери энергии обеспечиваются низкопороговыми процессами R2–R5 (табл. 1); 2) Несмотря на высокие скорости R4 в плазме HBr, стационарные значения E/N в этой системе заметно ниже, чем в HCl (рис. 4). Это обусловлено высокими скоростями ионизации HBr (R7), которые превышают аналогичные значения для HCl в 1.6–3 раза; 3) Высокие скорости R4 для молекул HBr приводят к тому, что переход к прилипательному режиму разряда происходит при значительно меньших давлениях, чем в плазме HCl; 4) Диссоциативное прилипание к HX_{V>0} не оказывает принципиального влияния на кинетику образования-гибели заряженных частиц.

Кинетическая схема и характеристики процессов в HCl и HBr Таблица 1

			тиотпіци т
N	Реакция	ε_{th} , σ_{max} , константа скорости	
1,		X = Cl	X = Br
R1	$HX + e \rightarrow HX + e$	$6.36 \times 10^{-15} \text{ cm}^2$	$1.21 \times 10^{-14} \text{ cm}^2$
R2	$HX + e \rightarrow HX^{*}(r=1-10) + e$	$2.87 \times 10^{-15} \text{ cm}^2$	$9.20 \times 10^{-15} \text{ cm}^2$
R3	$HX + e \rightarrow HX^{*}(v=1, 2, 3) + e$	$\varepsilon_{th} = 0.37 9\text{B}$	$\varepsilon_{th} = 0.30 \Im B$
		$1.31 \times 10^{-15} \text{ cm}^2$	$2.15 \times 10^{-15} \text{ cm}^2$
		$9.11 \times 10^{-17} \text{ cm}^2$	2.51×10^{-17} см ²
R4	$HX + e \rightarrow HX^{-} \rightarrow X^{-} + H$	$\varepsilon_{th} = 0.41$ эВ	$\varepsilon_{th} = 0.39 \ \mathrm{B}$
	\rightarrow H ⁻ + X	1.27×10^{-17} см ²	$4.88 \times 10^{-16} \text{ cm}^2$
R5	$HX + e \rightarrow H + X + e$	$\varepsilon_{th} = 5.5 \ \mathrm{BB}$	$\varepsilon_{th} = 4.3 - 9.3 \Im B$
		$2.90 \times 10^{-17} \text{ cm}^2$	5.27×10^{-17} см ²
R6	$HX + e \rightarrow HX^{*}(el) + e$	$\varepsilon_{th} = 9.3 - 9.5 \ B$	
R7	$HX + e \rightarrow HX^+ + 2e$	$\varepsilon_{th} = 12.7$ эВ	$\varepsilon_{th} = 11.7$ эВ
		$1.60 \times 10^{-17} \text{ cm}^2$	2.70×10^{-17} см ²
R8	$\mathrm{HX}^{+} + \mathrm{X}^{-} (\mathrm{H}^{-}) \to \mathrm{HX} + \mathrm{X} (\mathrm{H})$	5×10 ⁻⁸ см ³ /с	$5 \times 10^{-8} \text{ cm}^{3}/\text{c}$
R9	$HX(v=1) + HX \rightarrow HX + HX$	$1.8 \times 10^{-14} \text{ cm}^{3/c}$	$2.2 \times 10^{-14} \mathrm{cm^{3/c}}$
R10	$HX^+ \rightarrow$ стенка	D ₊	D ₊
R11	е → стенка	D_e	D_{ρ}

Рис. 3. Энергетическое распределение электронов: $1-E/N = 1 \times 10^{-15}$ Всм², $2-8 \times 10^{-15}$ Всм².

Удовлетворительное согласие расчетных и экспериментальных [1] значений E/N (рис. 4) и Γ_+ для плазмы HCl свидетельствует в пользу того, что используемая модель адекватно описывает стационарные параметры и кинетику активных частиц и в плазме HBr. В пользу такого заключения говорят близость физико-химических характеристик молекул HCl и HBr и принципиальная общность наборов химических процессов в обеих системах.

При моделировании плазмы HBr в условиях тлеющего разряда постоянного тока (p = 30-250 Па, $i_p = 10-30$ мА) в пятикомпонентном (HBr/H/Br/H₂/Br₂) приближении было найдено, что характер изменения E/N с давлением газа аналогичен монотонным зависимостям, известным для молекулярных газов (рис. 5). В области p > 80 Па ($N_0 > 1.2 \times 10^{16}$ см⁻³) зависимость E/N от давления является слабой (2.02×10^{-15} – 1.94×10^{-15} Всм² при p = 80–250 Па and $i_p = 20$ мА), что соответствует прилипательному режиму разряда. ФРЭЭ формируется, в основном, потерями энергии электронов при столкновениях с молекулами HBr, при этом влияние продуктов диссоциации при p > 60 Па ($N_0 > 1.1 \times 10^{16}$ см⁻³) является пренебрежимо малым. Это связано с доминированием молекул HBr над остальными нейтральными компонентами плазмы (рис. 6).

Рис. 5. Приведенная напряженность электрического поля в плазме HBr.

Рис. 6. Концентрации нейтральных частиц в плазме НВг при *i*_{*n*} = 20 мА.

Кинетика и концентрации нейтральных частиц в плазме HBr определяются атомно-молекулярными процессами $Br_2 + H \rightarrow HBr + Br$ (R12, $k_{12} = 7.3 \times 10^{-11}$ $cm^{3}/c)$, HBr + H \rightarrow Br + H₂ (R13, $k_{13} = 3.7 \times 10^{-12} cm^{3}/c)$, H₂ + Br \rightarrow HBr + H (R14, $k_{14} = 4.5 \times 10^{-23} \text{ см}^3/\text{с})$ и HBr + Br \rightarrow Br₂ + H (R15, $k_{15} = 2.5 \times 10^{-39} \text{ см}^3/\text{с})$. С ростом давления газа скорости R12 и R13 возрастают, что не компенсируется убылью атомов Br по реакциям R14 и R15 из-за низких констант скоростей последних. В результате, эффективная скорость генерации атомов Br в ~ 1.4 раза выше скорости инициирования этого процесса при электронном ударе. В то же время, эффективная скорость генерации Н в 17-153 раза ниже скорости R5, что приводит к $n_{Br}/n_{H} = 1.8 \times 10^{3} - 1.2 \times 10^{4}$ (рис. 6). Снижение n_{H} с ростом N_{0} связано с ростом скоростей R12 и R13, которые обеспечивают также высокие скорости генерации HBr и H₂. Это обуславливает низкие степени диссоциации HBr $(n_{HBr}/n_{Br} = 9.9-33.4$ при $N_0 = 5.7 \times 10^{15} - 3.5 \times 10^{16}$ см⁻³, что соответствует p = 30-250 Па при $i_p = 20$ мА) и $n_{H_2} \gg n_H$. Выполнение условия $n_{Br_2}/n_{Br} = 3.0-11.6$ связано с высокой скоростью восстановления Br₂ в объемной и гетерогенной рекомбинации атомов брома.

Рост n_{HBr} и n_{Br_2} с увеличением давления газа компенсирует снижение частоты ионизирующих столкновений электронов, поэтому скорость ионизации незначительно возрастает (рис. 7). Уже при $p \sim 50$ Па ($N_0 \sim 8.0 \times 10^{15}$ см⁻³ при $i_p = 20$ мА) происходит смена доминирующего механизма гибели электронов и

положительных ионов от диффузии к стенкам реактора к диссоциативному прилипанию и ион-ионной рекомбинации. Увеличение эффективной частоты гибели электронов приводит к снижению их концентрации в 3.6 раза при $i_p = 10$ мА и в 1.9 раза при $i_p = 30$ мА (рис. 8).

Рис. 7. Скорости образования и гибели заряженных частиц в плазме HBr при $i_p = 20$ мА: 1-ионизация, 2, 3-диссоциативное прилипание HBr_{V=0}, и HBr_{V=1}, 4-ион-ионная рекомбинация, 5-диффузионная гибель электронов и положительных ионов.

Рис. 8. Концентрация электронов (1) и относительная концентрация отрицательных ионов (2) в плазме HBr.

Характер изменения n_{Br} - определяется суммарной скоростью диссоциативного прилипания электронов к HBr и Br₂. Величина n_{Br} - $/n_e$ составляет 306– 1600 при $i_p = 10$ мА и 129–465 при $i_p = 30$ мА в диапазоне p = 30–250 Па. Несмотря на высокие значения констант скоростей прилипания для HBr_{V>0} (~ 2.2×10^{-9} см³/с для HBr_{V=1} и 2.1×10^{-9} см³/с для HCl_{V=2} при p = 100 Па и $i_p = 20$ мА), реальный вклад последних в общую скорость диссоциативного прилипания не превышает 5% (рис. 7). Это связано с низкой заселенностью колебательных уровней V>0 (например, $n_{HBr_{V=0}}/n_{HBr_{V=1}} = 24$ –302 и $n_{HBr_{V=0}}/n_{HBr_{V=2}} = 2.4 \times 10^3$ – 3.7×10^5 при p = 30–250 Па и $i_p = 20$ мА) из-за высоких скоростей V-T релаксации HBr_{V=1} и низкой эффективной колебательной температуры ($T_V = 771$ –500 K).

Концентрация положительных ионов возрастает с ростом давления газа (уменьшение D_+ с ростом N_0) и тока разряда (увеличение скорости ионизации с ростом i_p). Доминирующими ионами являются HBr⁺ и Br₂⁺, при этом высокая концентрация последнего ($n_{HBr} + /n_{Br_2}^+ = 1.5 - 1.1$ по сравнению с $n_{HBr} / n_{Br_2} = 3.4 - 2.9$) обусловлена высокими скоростями ионизации Br₂. Плотность потока положительных ионов на стенку разрядной трубки Γ_+ линейно растет с увеличением тока разряда и снижается с ростом давления. Последний эффект обусловлен резким снижением коэффициентов диффузии ионов.

<u>В четвертой главе</u> проводится анализ закономерностей физикохимических процессов, определяющих стационарные параметры и состав плазмы бинарных смесей HBr-Ar, He, H₂ (p = 30-250 Па, $i_p = 20$ мA). Увеличение содержания Ar или He в смеси с HBr приводит к снижению E/N (рис. 10), при этом диапазон изменения E/N увеличивается с ростом давления газа ($2.4 \times 10^{-15} - 1.5 \times 10^{-15}$ Bcm² или в 1.6 раза при p = 30 Па и $1.8 \times 10^{-15} - 0.8 \times 10^{-15}$ Bcm² или в 2.2 раза при p = 120 Па в смеси HBr-Ar). Это связано со снижением частоты гибели электронов в процессе диссоциативного прилипания v_{da} , а также с увеличением вклада этого процесса в общую скорость гибели электронов в области высоких давлений. Характер изменения ФРЭЭ (рис. 11) не согласуется с изменением E/N и сопровождается увеличением средней энергии электронов ($\bar{\varepsilon} = 5.8$ –6.9 эВ и 5.8–10.0 эВ при p = 30 Па и 0–90% Ar или He, соответственно). Причина этого заключается в том, что процессы возбуждения и ионизации Ar и He имеют высокие пороговые энергии, но низкие величины сечений.

Рис. 10. Приведенная напряженность электрического поля в смесях HBr-Ar (1, 4) и HBr-He (2, 5) и HBr-H₂ (3, 6) при p = 30 Па (1-3) и 120 Па (4-6).

Рис. 12. Концентрация электронов при p = 30Па (1, 2) и 120 Па (3, 4) и относительная концентрация отрицательных ионов при p = 30Па (5, 6) в плазме смесей HBr-Ar (1, 3, 5) и HBr-He (2, 4, 6).

Рис. 11. Энергетическое распределение электронов в плазме смесей HBr-Ar и HBr-He при *p* = 30 Па.

При p > 50-60 Па рост \bar{e} в смеси НВг-Не обуславливает двукратное увеличение эффективного коэффициента диффузии электронов ($D_e = 1.2 \times 10^6 - 2.4 \times 10^6$ см²/с при p = 30 Па и 0–90% Не) и частоты их диффузионной гибели. В сочетании со слабым ростом суммарной скорости ионизации это приводит к снижению n_e (рис. 12, кривая 2). При p > 50-60 Па величина n_e определяется балансом частот ионизации v_{iz} и v_{da} , при этом рост содержания Ar или He сопровождается снижением v_{da} и ростом n_e (рис. 12, кривые 3 и 4). В области

низких давлений, при изменении содержания Ar в смеси величина D_e снижается ($1.2 \times 10^6 - 8.8 \times 10^5$ см²/с при p = 30 Па и 0–90% Ar) из-за конкуренции роста $\bar{\varepsilon}$ и изменения режима диффузии от свободного к амбиполярному. Поэтому имеет место рост n_e (рис. 12, кривая 1). Параметр n_{Br} - $/n_e$ линейно снижается с ростом степени разбавления HBr благородным газом (рис. 12). Более высокие значения n_{Br} - $/n_e$ в смеси HBr-He (17.7 против 16.8 при p = 30 Па и 40.4 против 30.5 при p = 120 Па и 90% Не и Ar, соответственно) связаны с различиями в концентрациях электронов.

Суммарная концентрация положительных ионов снижается с ростом доли Ar или He при p = const (например, $n_+ = 2.3 \times 10^{11} - 6.5 \times 10^{10} \text{ см}^{-3}$ при 0–90% Ar и $2.3 \times 10^{11} - 3.9 \times 10^{10} \text{ см}^{-3}$ при 0–90% He и p = 30 Па), при этом в области p > 50–60 Па имеет место интенсификация ионной бомбардировки поверхности, контактирующей с плазмой (например, $\Gamma_+ = 1.2 \times 10^{15} - 2.9 \times 10^{15} \text{ см}^{-2} \text{c}^{-1}$ при 0–90% Ar и $1.2 \times 10^{15} - 4.0 \times 10^{15} \text{ см}^{-2} \text{c}^{-1}$ при 0–90% He и p = 120 Па). Причиной этого является рост D_+ из-за изменения электрофизических параметров плазмы, эффективной массы и размера доминирующего иона.

Рис. 13. Отношение n_{HBr}/n_{Br} (1–4) и мольная доля атомов Br n_{Br}/N (5, 6): 1–HBr-Ar при p = 30 Па; 2–HBr-He при p = 30 Па; 3–HBr-Ar при p = 120 Па; 4–HBr-He при p = 120 Па; 5–HBr-Ar при p = 30 Па; 6–HBr-Ar при p = 120 Па.

Разбавление HBr Ar или He сопровождается ростом констант скоростей диссоциации молекул при электронном ударе и частот диссоцииэлектронов рующих столкновений $v_{dis} = k_{dis} n_e$. Для системы HBr-He рост v_{dis} не компенсирует снижения n_{HBr} и n_{Br_2} , так что имеет место лишь незначительный рост степени диссоциации молекул HBr (n_{Br}/n_{HBr}) = 0.07-0.08 при p = 30 Па и 0.04-0.07 при p = 120 Па). Аналогичная ситуация имеет место и для HBr-Ar при p <50-60 Па. Напротив, при *p* > 70-80 Па разбавление НВг аргоном сопро-

вождается заметным ростом v_{dis} и степени диссоциации молекул (например, $n_{Br}/n_{HBr} = 0.04-0.16$ при p = 120 Па и 0–90% Ar), при этом n_{Br} снижается всего в 1.12 раза при 0–50% Ar. Соответвующие данные представлены на рис. 13. Найдено, что ступенчатая диссоциация молекул по схеме HBr + $X^{*,m} \rightarrow H + Br$ + X, $Br_2 + X^{*,m} \rightarrow Br + Br + X$ и $H_2 + X^{*,m} \rightarrow H + H + X$, где $X^{*,m}$ - метастабильные атомы Ar^{*}(³P₀, ³P₁, ³P₂) или He^{*}(¹S₀, ³S₁) не вносит заметного вклада в общую скорость этого процесса из-за низких скоростей возбуждения (высокие пороговые энергии, низкие сечения) метастабильных атомов.

Увеличение содержания H₂ в смеси с HBr также приводит к монотонному снижению E/N (рис. 10). В области p < 50-60 Па и $E/N > 2.2 \times 10^{-15}$ Всм², где энергетическое распределение электронов формируется, в основном, потерями их энергии в высокопороговых ($\varepsilon_{th} > 7$ эВ) процессах, характер изменения ФРЭЭ (рис. 14) и $\overline{\varepsilon}$ аналогичен рассмотренному для смесей HBr-Ar, He. В области p > 80 Па и $E/N < 2.0 \times 10^{-15}$ Всм² добавка H₂ приводит к обеднению ФРЭЭ в области 4–15 эВ и снижению $\bar{\varepsilon}$ за счет потерь энергии на вращательное и колебательное возбуждение H₂. Однако рост крутизны средней части ФРЭЭ сопровождается ростом скорости дрейфа электронов ($v_E = 1.02 \times 10^7 - 1.39 \times 10^7$ см/с при 0–90% H₂ и p = 250 Па), их коэффициента диффузии ($D_eN = 1.97 \times 10^{22} - 2.99 \times 10^{22}$ 1/смс) и подвижности ($\mu_eN = 5.74 \times 10^{21} - 1.10 \times 10^{22}$ 1/Всмс).

Характер изменения n_e с ростом доли H_2 не зависит от доминирующего механизма гибели электронов (рис. 15). В области низких давлений рост v_{iz} за счет соответствующих констант скоростей компенсируется более быстрым ростом частоты диффузионной гибели электронов v_{dif} , что вызывает снижение n_e . В области высоких давлений имеет место резкое снижение v_{iz} (в 3.7 раза при p = 250 Па и 0–90% H_2 из-за изменений $\bar{\varepsilon}$ и констант скоростей ионизации), при этом аналогичное поведение v_{da} корректируется ростом v_{dif} , вклад которой становится заметным при содержании H_2 в смеси более 70%. Это также приводит к снижению n_e .

350

300

250

1.4

0.0

0

Рис. 14. Энергетическое распределение электронов в плазме HBr-H₂: 1 – 30 Па; 2 – 250 Па.

Рис. 16. Концентрации нейтральных невозбужденных частиц в плазме HBr-H₂ при p = 120 Па.

Рис. 15. Концентрация электронов (1–3) и относительная концентрация отрицательных ионов (4, 5) в плазме HBr-H₂: 1, 5 – 30 Па; 2 – 120Па; 3, 4 – 250 Па.

0.2

0.4

Доля H₂ в смеси HBr/H₂

0.8

1.0

0.6

Концентрация положительных ионов снижается с ростом доли H_2 при $p = \text{const} (2.31 \times 10^{11} - 5.23 \times 10^{11} \text{ см}^{-3}$ в чистом HBr и $5.20 \times 10^{10} - 1.86 \times 10^{11}$ см⁻³ в смеси 10% HBr + 90% H_2 при p = 30-250 Па) из-за снижения суммарной скорости ионизации и роста D_+ . Так как тенденции изменения n_+ и D_+ являются противоположными, величина Γ_+ остается практически постоянной. Таким образом, варьирование начального состава смеси HBr-H₂ не приводит к интенсификации ионной

бомбардировки поверхности, контактирующей с плазмой.

Расчеты показали, что варьирование состава смеси HBr-H₂ не сопровождается принципиальными изменениями кинетики R18–R21 из-за низкой константы скорости R14 и малых степеней диссоциации H₂, ограничивающих скорости R12 и R13. Снижение частот диссоциирующих столкновений электронов с молекулами HBr ($v_{dis} = 3.88-2.67 \text{ c}^{-1}$ при 0–90% H₂ и p = 120 Па), Br₂ (11.90–8.07 c⁻¹) и H₂ (1.18–0.91 c⁻¹) обеспечивает медленное, по сравнению с линейной зависимостью, падение n_{HBr} (1.10×10^{16} – 1.72×10^{14} см⁻³ или в 6.8 раз при 0–90% H₂ и p = 120 Па) и n_{Br} (в 4.4 раза при 0–90% H₂ и p = 120 Па) (рис. 16). Относительно малое изменение величины n_{Br} обусловлено ростом вклада R12 в общую скорость генерации атомов брома, что также вызывает быстрое расходование молекул Br₂ (в 40 раз при 0–90% H₂ и p = 120 Па).

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- Сформирован набор сечений процессов элементарных процессов для молекулы HBr. Проведено тестирование наборов сечений для всех молекулярных компонентов плазмы при сравнении расчетных данных по интегральным характеристикам электронного газа и таунсендовским кинетическим коэффициентам с данными независимых литературных источников.
- Предложена полная кинетическая схема (набор реакций, сечений и кинетических коэффициентов), обеспечивающая адекватное описание закономерностей физико-химических процессов образования и гибели заряженных частиц и стационарного состава плазмы HBr.
- 3) Проведен сравнительный анализ электрофизических параметров плазмы HBr и HCl с привлечением данных диагностики (приведенная напряженность электрического поля *E/N*, плотность потока ионов Г₊) последней. Показано, что различия этих систем связаны с различиями в константах скоростей возбуждения (колебательного, электронного), диссоциативного прилипания и ионизации, определяющих вид ФРЭЭ и кинетику образования-гибели электронов.
- 4) Проведено исследование стационарных параметров и состава плазмы НВг в условиях тлеющего разряда постоянного тока. Получены расчетные данные по энергетическим распределениям электронов, константам скоростей процессов под действием электронного удара и концентрациям нейтральных и заряженных частиц. Установлено, что определяющая роль в формировании состава нейтральных частиц принадлежит атомно-молекулярными процессам. Показано, что диссоциативное прилипание к HBr_{V>0} не оказывает принципиального влияния на кинетику образования-гибели заряженных частиц.
- 5) Проведено исследование стационарных параметров и состава плазмы бинарных смесей HBr–Ar, He, H₂ переменного состава. Установлено, что варьирование начального состава смесей вызывает изменение электрофизических параметров разряда (ФРЭЭ, средней энергия и концентрация электронов) и кинетики процессов при электронном ударе.

Цитируемая литература:

1. Ефремов, А.М. Параметры плазмы и механизмы травления металлов и полупроводников в хлороводороде / А.М. Ефремов, С.А. Пивоварёнок, В.И. Светцов // Микроэлектроника. – 2009. – Т.38, № 3. – С. 163-175.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

- 1) Смирнов, А.А. Кинетические и транспортные характеристики процессов под действием электронного удара в HBr / А.А. Смирнов, А.М. Ефремов, В.И. Светцов // Известия Вузов. Химия и хим. технология. 2009. Т.52, Вып. 11. С. 48-51.
- 2) **Ефремов, А.М.** Параметры плазмы HCl и HBr в условиях тлеющего разряда постоянного тока / А.М. Ефремов, А.А. Смирнов, В.И. Светцов // Химия высоких энергий. 2010. Т.44, №3. С. 277-281.
- 3) Смирнов, А.А. Параметры и состав плазмы НВг в условиях тлеющего разряда постоянного тока / А.А. Смирнов, А.М. Ефремов, В. И. Светцов // Микроэлектроника. – 2010. – Т.39, №6. – С. 418-426.
- 4) Смирнов, А.А. Влияние добавок Ar и He на параметры и состав плазмы HBr / А.А. Смирнов, А.М. Ефремов, В.И. Светцов. // Микроэлектроника. 2010. Т.39, №5. С. 392-400.
- 5) Смирнов, А.А. Электрофизические параметры плазмы в смесях HBr-Ar и HBr-He переменного состава / А.А. Смирнов, А.М. Ефремов, В.И. Светцов // Известия Вузов. Химия и хим. технология. 2010. Т.53, Вып. 9. С. 55-58.
- Smirnov, A. Plasma parameters and active particles kinetics in HBr dc glow discharges / A. Smirnov, A. Efremov, V. Svettsov, A. Islyaykin // Proceedings SPIE. – 2009. – V. 7521. – P. 752108-1 - 752108-7.
- 7) **Ефремов, А.М.** Сравнительный анализ параметров и состава плазмы в HCl и HBr / А.М. Ефремов, А.А. Смирнов, В.И. Светцов // Материалы IV Всероссийской конференции «Актуальные проблемы химии высоких энергий». Москва, РХТУ им. Д.И. Менделеева, 2-3.11.2009. С. 32.
- Ефремов, А.М. Кинетика и механизмы плазмохимических процессов в смесях HBr с инертными газами / А.М. Ефремов, А.А. Смирнов, В.И. Светцов // Материалы IV Всероссийской конференции «Актуальные проблемы химии высоких энергий». – Москва, РХТУ им. Д.И. Менделеева, 2-3.11.2009. – С. 33.
- 9) Smirnov, A. Plasma parameters and active particles kinetics in HBr dc glow discharges / A. Smirnov, A. Efremov, V. Svettsov, A. Islyaykin // Book of abstracts. International Conference "Micro- and nanoelectronics-2009". Russia, Moscow–Zvenigorod, October, 05-09, 2009. P. O3-23.
- Efremov, A. A comparative study of plasma parameters and gas phase compositions in HCl and HBr direct current glow discharges / A. Efremov, A. Beylin, A. Smirnov // Book of Abstracts. 19th International Symposium on Plasma Chemistry. Germany, Bohum, 26-31.07.2009. –P. 324.