ПРОЦЕССЫ ПЕРЕНОСА КОМПОНЕНТОВ РАСТВОРОВ ЭЛЕКТРОЛИТОВ В ЗОНУ ПЛАЗМЫ ТЛЕЮЩЕГО РАЗРЯДА АТМОСФЕРНОГО ДАВЛЕНИЯ

А. В. Хлюстова, А. И. Максимов, В.А. Титов

Институт химии растворов РАН 153048, г. Иваново, ул. Академическая, 1. Aim@ihnr.polytech.ivanovo.su Ивановский государственный химико-технологический университет 153000, г. Иваново, ул. Ф. Энгельса, 7.

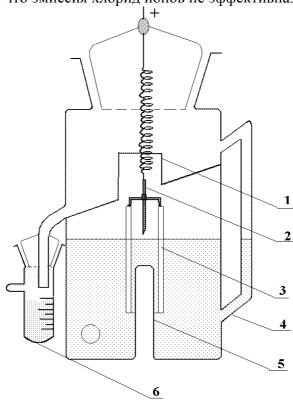
Горение разряда с электролитным катодом приводит к образованию химически активных частиц как в растворе, так и в зоне плазмы у поверхности раствора. Следствием этого является инициирование окислительно-восстановительных гомогенных и (или) гетерогенных процессов, которые могут найти применение для очистки и стерилизации растворов и изделий, также как и для реализации ряда технологических процессов. Горение разряда сопровождается процессами переноса нейтральных и заряженных частиц между раствором и зоной плазмы, в инициировании которых основную роль играет бомбардировка раствора энергичными ионами. Свойства разряда и эффективность химической активации растворов в сильной степени зависят от кинетики процессов переноса. Оптимизация технологических процессов, использующих газоразрядную активацию растворов невозможна без детальных исследований процессов переноса. Основной проблемой исследований систем плазма-раствор является влияние разряда на химическую активацию в растворе. Влияние газового разряда на раствор определяется свойствами разрядной плазмы. для этого рам необходимо знать химическую состав этой плазмы. Положительные ионы из плазмы бомбардируют поверхность раствора и активируют его. Под действием бомбардировки компоненты раствора, включая сольватированные электроны, переходят в зону плазмы. Следовательно, процесс переноса нейтральных и заряженных частиц является основной проблемой системы плазма-раствор.

Для исследований процессов переноса была сделана специальная конструкция ячейки (рис.1). Данная модель позволяла собирать конденсат при неравновесном испарении под действием разряда и фиксировать изменение уровня раствора при горении разряда. Анод закреплялся на поплавке для сохранения постоянного расстояния между электродом и поверхностью раствора (3-5 мм). Анодом была медная проволока. В качестве жидкого катода использовались растворы LiCl, NaCl, KCl, RbCl в диапазоне концентраций $10^{-1}-10^{-2}$ моль/л. Получены кинетические характеристики убыли раствора под действием разряда и накопления конденсата при неравновесном испарении. Сделаны оценки снизу средних коэффициентов переноса растворителя (воды). Результаты представлены в таблице 1.

Таблица 1. Коэффициенты переноса молекул воды (молекула/ион), при концентрациях электролитов в моль/л.

	LiCl		NaCl		KCl		RbCl	
	0,1	0,01	0,1	0,01	0,1	0,01	0,1	0,01
20	653	744	733	784	856	663	744	744
25	595	701	587	664	694	635	694	664
30	549	602	489	496	602	584	708	496
35	471	692	716	501	592	619	683	619

Значения коэффициентов высокие. Для более концентрированных растворов коэффициенты для растворителя получались около 10-100 молекул (концентрации вблизи насыщения).


Энергетические оценки показали, что такие большие коэффициенты возможны только лишь в случае переноса больших водных кластеров.

Предварительный анализ показал, что состав распыленного кластера и состав исходного раствора одинаков.

Таблица 2. Содержание растворенного вещества в конденсате. Исходный раствор KCl 0.1 моль/л. исходное значение pH=5.5. концентрация приведена в моль/л.

	Конд	ценсат в лов	ушке	Основной раствор			
Ток, мА	K^{+}	Cl ⁻	рН	K^{+}	Cl ⁻	PH	
20	0,56	0,031	2,03	0,28	0,23	10,1	
25	0,63	0,033	2,2	0,199	0,19	10,3	
30	0,56	0,056	2,0	0,177	0,22	8,9	
35	0,63	0,042	1,84	0,14	0,14	10,8	

Из этого следует, что эмиссия хлорид ионов не эффективна.

Рис.1. Схема ячейки. 1 – анодный вывод, 2 – анод; 3 – поплавок; 4 – водомерное стекло; 5 – направляющий стержень; 6 – сборник конденсата, место расположение катодного отростка.