ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ПЛАЗМЕННОЙ ЭЛЕКТРОТЕРМИЧЕСКОЙ УСТАНОВКИ ДЛЯ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОГО ПОРОШКА.

Ахметсагиров Р.И., Шакиров Ю.И., Хайруллин А.Х.

Камский государственный политехнический институт, 423800, Набережные Челны, просп. Мира 1/18.eie@kampi.kcn.ru

В настоящее время для создания ферромагнитных сердечников и напыления получают ферромагнитный порошок Fe_3O_4 электро-химическими, химическими способами, которые отличаются сложностью и имеют низкую производительность. В предлагаемом способе, включающем воздействие переменного тока на электроды, получение порошка достигается тем, что между жидким электродом-электролитом (H_2O_2 , $NaCl_1$, $CuSO_4$) и твердым электродом (углеродистые стали с содержанием углерода: 0.9.35; 0

Получение порошка осуществляли на устройстве, схема которого приведена на рис. 1.

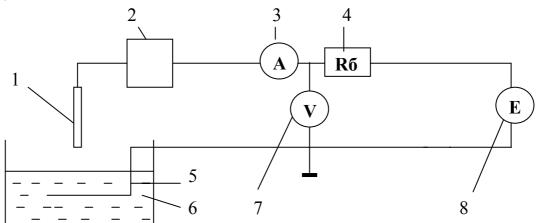


Рис. 1. Электротермическая установка.

1-электрод (анод); 2-устройство для перемещения твердого электрода относительно жидкого; 3-амперметр; 4-баластное сопротивление; 5-электрод (катод); 6-электролит; 7-вольметр; 8-источник питания.

Получение ферромагнитных порошков разных диаметров позволяет расширить сферу их применения. Дисперсность порошка значительно влияет на его свойства.

Поэтому целью данной работы явилась оптимизация параметров (ток, напряжение разряда, межэлектродное расстояние, диаметр стержня и род электролита) плазменной электротермической установки для её автоматизации. Оптимизацию параметров проводим методом полного факторного эксперимента [2]. По результатам проведенной серии опытов, после их математической обработки получена следующая модель процесса: где x_1 – I, mA; x_2 – U, B; x_3 – I, mm; x_4 – d, mm; x_5 – pod электролита – факторы эксперимента;

$$D_{TOP} = 50,69 + 3,3 \cdot x_1 - 5,22 \cdot x_2 + 6,16 \cdot x_3 + 13,16 \cdot x_4 - 5,78 \cdot x_5 + 0,72 \cdot x_1 \cdot x_2 + 1,34 \cdot x_1 \cdot x_3 + 5,84 \cdot x_1 \cdot x_4 - 4,34 \cdot x_1 \cdot x_5 - 0,18 \cdot x_2 \cdot x_3 - 2,25 \cdot x_2 \cdot x_4 + 2,44 \cdot x_2 \cdot x_5 + 6,75 \cdot x_3 \cdot x_4 - 7,31 \cdot x_3 x_5 - 7,50 \cdot x_4 \cdot x_5$$

После отбрасывания незначимых коэффициентов соотношение приводится к следующему виду:

$$D_{HOP} = 50,69 - 5,22 \cdot x_2 + 6,16 \cdot x_3 + 13,16 \cdot x_4 + 5,78 \cdot x_5 + 5,84 \cdot x_1 \cdot x_4 + 6,75 \cdot x_3 \cdot x_4 - 6,16 \cdot x_4 + 6,16 \cdot x_5 + 6,16 \cdot x_5$$

$$7,31 \cdot x_3 \cdot x_5 - 7,50 \cdot x_4 \cdot x_5$$

Это уравнение может быть использовано для нахождения необходимых режимов работы, а также для управления процессом.

ЛИТЕРАТУРА.

- 1. С. №1582464 Способ получения металлического порошка. Гайсин Ф. М., Хакимов Р. Г., Шакиров Ю. И., 1. 04. 90 г.
- 2. Применение метода полного факторного зксперимента при изучении свойств упрочненных материалов высококонцентрированными источниками излучения: Методические указания к выполнению учебно исследовательской работы и индивидуальным занятиям по курсу «метрология, методы и техника»/ Составитель Ю.И. Шакиров. Наб. Челны: КамПИ, 1995 г., 25 с.