ВОЗДЕЙСТВИЕ РАЗРЯДА ПОСТОЯННОГО ТОКА НА ПЛЕНКИ ПОЛИКАРБОНАТА

А. Б. Гильман*, А.И. Драчев*, Л.Э. Венгерская**, Г.К. Семенова*, А.А. Кузнецов*, В.К. Потапов**

*Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук, 117393, Москва, ул. Профсоюзная, 70, plasma@ispm.ru **ДГУП ЦН и ВТ «Очаково»

Ранее нами было показано, что действие тлеющего НЧ-разряда в атмосфере воздуха, азота и кислорода приводит к существенному увеличению поверхностной энергии пленок из отечественного поликарбоната марки ПК-Л-10 (Дифлон, ТУ 6-05-938-74), сохраняющейся в течение длительного времени [1].

В данной работе проведено сравнительное исследование воздействия разряда постоянного тока на полимерные пленки из поликарбоната Дифлон и идентичные по химической природе поликарбонаты Макролон® (ФРГ) и Лексан® (США). Полимеры являются продуктом поликонденсации 2,2–бис–(4–гидроксифенил)–пропана (бисфенола А) и фосгена.

Пленки толщиной 25–40мкм получали методом полива из растворов полимеров в хлористом метилене. Методика обработки в разряде описана в [2], образцы помещали в области катодного падения (поле ~300В/см), давление рабочего газа (воздуха) составляло 13.3 Па. Переменными параметрами являлись ток разряда I (10–60мА) и время обработки τ (15–90с).

Изменение свойств поверхности характеризовали значениями краевых углов определяли гониометрическим методом, и рассчитанными смачивания (θ), которые величинами полной поверхностной энергии (γ), полярного (γ^{p}) и дисперсионного (γ^{d}) компонентов [3]. С помощью метода динамического конденсатора [4] измеряли величину и знак поверхностного потенциала (ϕ), характеризующего величину возникающего в полимере под действием плазмы заряда. Значение плотности поверхностного заряда (Q) рассчитывали по формуле плоского конденсатора на основании экспериментальных значений ф с учетом измеренной диэлектрической проницаемости пленок (є). Процессы, связанные с образованием и перераспределением зарядов в пленках поликарбонатов изучали методами термостимулированных релаксации (ТСР) и деполяризации (ТСД) [4]. Измерения токов ТСР проводили в условиях нагрева от 300К до 450К с постоянной скоростью 4град/мин. Для измерения токов ТСД пленки нагревали до 420К и поляризовали во внешнем электрическом поле напряженностью 10'В/м в течение 20 минут. Затем охлаждали со скоростью 4град/мин до комнатной температуры, выключали внешнее поле и проводили измерения ТСД при тех же условиях, что и ТСР.

Было установлено, что обработка пленок поликарбонатов в катодном падении разряда постоянного тока приводит к значительному уменьшению краевых углов смачивания по воде и глицерину и к увеличению абсолютных значений плотности поверхностного заряда (без изменения его отрицательного знака). В табл.1 приведены данные по краевым углам смачивания, поверхностной энергии и ее компонентам и плотности поверхностного заряда для исходных и модифицированных при I=40мA и $\tau=60$ с пленок. Видно, что пленки Дифлон имеют после модификации больший угол смачивания и меньший заряд, чем пленки Лексан ® и Макролон®.

Таблица 1.

Величины краевых углов смачивания (θ) по воде и глицерину, поверхностной энергии (γ),

полярного (γ^{p}) и дисперсионного (γ^{d}) компонентов и плотности поверхностного заряда (Q) для пленок Дифлон, Макролон® и Лексан® (исходных и обработанных в катодном

Полимер	Толщина, мкм	Образец	θ, град		Поверхностная энергия ү, мДж/м ²			Q,
			по воде	по глиц.	γ	γ^{p}	γ^{d}	HINJI/CM
Дифлон	30	исх.	82	75	23.7	15.25	8.45	- 0.5
		обраб.	12.5	7.5	71.4	54.0	17.4	4.0
Макролон®	25	исх.	74	61	35.5	10.3	25.2	- 0.3
		обраб.	7.5	6	72.6	56.1	16.5	-7.5
Лексан®	40	исх.	76	64	33.3	10.2	23.1	-0.2
		обраб.	8	6	72.6	56.0	16.6	-7.9

падении разряда постоянного тока при I = 40 мÅ, $\tau = 60$ с).

Исследования показали, что с увеличением I происходит постепенное снижение угла смачивания (практически до растекания) и антибатный рост Q (рис.1). Зависимости $\theta-\tau$ и Q- τ имеют аналогичный характер. Полученные данные свидетельствуют о наличии корреляции между величиной заряда, возникающего при обработке пленок поликарбоната в разряде постоянного тока, и изменением их смачиваемости.

Рис. 1. А – Зависимость краевого угла смачивания (θ) по воде для модифицированных пленок Дифлон от тока разряда (*I*) (τ=60c). Б – Зависимость плотности поверхностного заряда (Q) от *I*.

Рис. 2. Зависимость краевого угла смачивания (θ) от плотности поверхностного заряда (Q) для пленки Дифлон (значения θ приведены для различных времени токов разряда И обработки).

На рис. 2 представлены полученные экспериментально значения в опытах по модификации пленки Дифлон с различными токами разряда и временами обработки. Налицо корреляция между этими параметрами, что свидетельствует о существенной роли поверхностного образующегося заряда в vвеличении смачиваемости пленки поликарбоната. Эти результаты хорошо согласуются с полученными нами ранее данными о роли зарядовых состояний в увеличении гидрофильности ряда полимеров, таких как полиимиды полипропилен, поливинилтриметилсилан, различного строения, политриметилсилилпропин и др.

Результаты исследований пленок поликарбонатов Дифлон, Макролон® и Лексан® методами ТСР и ТСД проведены на рис. 3, 4 и 5, соответственно. Токи ТСР (кривые 1) в интервале 300–410К близки к нулю, дальнейшее повышение температуры приводит к их незначительному возрастанию. Видно, что на термограммах ТСД исходных полимеров наблюдается только α -максимум в области 410–416К (кривые 2).

Рис. 3. Кривые ТСР(1,3) и ТСД(2,4) для пленки Дифлон исходной (1,2) и модифицированной в плазме (3,4).

Рис. 5. Кривые ТСР(1,3) и ТСД(2,4) для пленки Лексан® исходной (1,2) и модифицированной в плазме (3,4).

Рис. 4. Кривые ТСР(1,3) и ТСД(2,4) для пленки Макролон® исходной (1,2) и модифицированной в плазме (3,4).

Нагрев обработанных в плазме пленок приводит к перераспределению отрицательного поверхностного заряда в объём полимера. Следует отметить, что кривые токов ТСР для Дифлона и Макролона® имеют сходный характер и максимумы ралаксации заряда при 387К (кривые 3, рис. 3 и 4). Процесс объемного перераспределения заряда для Лексана® отличается (кривая 3, рис. 5), а максимум наблюдается при 432К. Ранее нами было показано, что отрицательный заряд на поверхности полимеров, модифицированных R тлеющем разряде, возникает за счет локализации на ловушках электронов инжектированных из плазмы [2,5].

Поляризация пленок Дифлон и Макролон® во внешнем поле приводит к возникновению токов ТСД, связанных с несколькими процессами (кривые 4, рис. 3, 4). Это – перераспределение отрицательного заряда, инжектированного в пленку из плазмы (ρ-максимум при 387К), дипольно-сегментальная релаксация (α-максимум при 413К) и узкий интенсивный максимум при 437К. На термограмме ТСД Лексана® видны два

максимума: ρ-максимум – при 432К и интенсивный максимум при 437К, а α-максимум проявляется в виде плеча на кривой (кривая 4, рис. 5).

Пик с максимумом при 437К наблюдается в узком интервале температур и имеет полуширину 10К, что не характерно для обычного релаксационного пика, полуширина которого составляет, как правило, ≥30К. Возможно, что этот пик связан с кристаллизацией. Однако, для более уверенного отнесения этого пика необходимы дополнительные исследования морфологии.

ЛИТЕРАТУРА

1. Гильман А.Б., Венгерская Л.Э., Григорьева Г.А., Потапов В.К. // Химия высоких энергий. 1999. Т.33. №6. С.475.

2. Гильман А.Б., Драчев А.И., Кузнецов А.А., Лопухова Г.В., Потапов В.К.// Химия высоких энергий. 1997. Т.31. № 2. С.141.

3. Wu S. Polymer Interfaces and Adhesion. N.Y.: Marcel Dekker. 1982. P.318.

4. Ferroelectric Polymers: Chemistry, Physics and Applications. Ed. by H.S. Nalva. N.Y.: Marcel Dekker. 1995. P.33.

5. Драчев А.И., Кузнецов А.А., Гильман А.Б., Валькова Г.А. // Химия высоких энергий. 2001. Т.35. №3. С.231-235.