На правах рукописи

Иванов Дмитрий Александрович

ТЕРМОДИНАМИКА БИНАРНЫХ СИСТЕМ NaBr-LnBr₃ ПО ДАННЫМ ВЫСОКОТЕМПЕРАТУРНОЙ МАСС-СПЕКТРОМЕТРИИ И КВАНТОВОЙ ХИМИИ

02.00.04 – физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Иваново – 2011 г.

Работа выполнена в лаборатории высокотемпературной масс-спектрометрии кафедры физики Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Ивановский государственный химико-технологический университет».

Научный руководитель:

доктор химических наук, профессор Кудин Лев Семенович

Официальные оппоненты:

доктор химических наук, профессор Алиханян Андрей Сосович

доктор химических наук, профессор **Гиричева Нина Ивановна**

Ведущая организация:

Санкт-Петербургский государственный университет, химический факультет

Защита состоится <u>«28» ноября 2011</u> г. в <u>10⁰⁰</u> часов в ауд. Г-205 на заседании совета по защите докторских и кандидатских диссертаций Д 212.063.06 при Ивановском государственном химико-технологическом университете по адресу: 153000 г. Иваново, пр. Ф.Энгельса, д. 7.

Тел.: (4932) 32-54-33 Факс: (4932) 32-54-33 e-mail: dissovet@isuct.ru

С диссертацией можно ознакомиться в Информационном центре Ивановского государственного химико-технологического университета по адресу: 153000 г. Иваново, пр. Ф.Энгельса, д. 10.

Автореферат диссертации разослан «____»____ 20____г.

Ученый секретарь совета по защите докторских и кандидатских диссертаций Д 212.063.06

Е.В.Егорова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Теоретический и практический интерес к лантаноидам и их соединениям не ослабевает на протяжении более полувека. Причиной этого является расширение их практического использования в различных областях науки, техники и технологии. С другой стороны, лантаноиды и их соединения представляют фундаментальный научный интерес, обусловленный специфическими особенностями их электронного строения. Установление взаимосвязи между электронной структурой лантаноида и геометрическими, энергетическими и другими характеристиками его соединений является важной задачей теоретической неорганической химии.

Галогениды лантанидов и бинарные системы типа MX–LnX₃ (М – щелочной металл, Ln – лантаноид, X – галоген), выбранные в качестве объектов исследования в настоящей работе, являются одними из наиболее перспективных соединений лантаноидов для их практического использования. В частности, системы нашли широкое применение в производстве новых высокоэффективных энергосберегающих источников света – металлогалогенных ламп. Для улучшения эмиссионных и эксплуатационных характеристик источников света требуется выявление оптимальных условий их работы. С этой целью проводятся специальные расчеты, которые моделируют элементарные процессы, протекающие в реальных условиях работы газоразрядных ламп. Для проведения подобных расчетов необходима полная информация о составе газовой фазы и термодинамических свойствах всех её компонент.

В лаборатории масс-спектрометрии кафедры физики Ивановского государственного химико-технологического университета с середины 90-х годов проводятся систематические исследования процесса испарения галогенидов лантанидов. Данные исследования поддерживались Государственным комитетом РФ по высшему образованию (проекты 94-9.3-149, 95-0-9.3-12) и Российским фондом фундаментальных исследований (проекты 01-03-32294-а, 06-03-32496-а, 09-03-97536р-цетр-а, 09-03-00315-а).

Цель работы заключалась в получении информации о составе насыщенного пара, определении термодинамических и структурных характеристик нейтральных и заряженных компонент над бинарными системами NaBr–LnBr₃ (Ln = La, Lu) и их индивидуальными составляющими и включала в себя:

- установление качественного молекулярного и ионного состава пара над индивидуальными соединениями (NaBr, LaBr₃, LuBr₃) и бинарными системами NaBr–LaBr₃ и NaBr–LuBr₃;
- определение парциальных давлений компонент пара и расчет энтальпий сублимации в виде простых и ассоциированных молекул;
- измерение констант равновесия химических реакций с участием нейтральных и заряженных компонент насыщенного пара;
- определение энтальпий ионно-молекулярных реакций на основе экспериментальных и теоретических данных;
- вычисление термохимических характеристик (энтальпий образования, энергий диссоциации и атомизации) молекул и ионов в газообразном состоянии;
- расчет активностей индивидуальных составляющих бинарных систем NaBr-LaBr₃ и NaBr-LuBr₃;
- квантово-химический расчет молекулярных параметров (межъядерных расстояний, валентных углов, частот колебаний, дипольных моментов) и энергетических характеристик зарегистрированных молекул и ионов;
- расчет и оценка термодинамических функций молекулярных и ионных ассоциатов.

Метод исследования. Экспериментальная часть работы выполнена методом высокотемпературной масс-спектрометрии (ВТМС), представляющим собой комбинацию эффузионного метода Кнудсена с масс-спектрометрической анализом продуктов испарения. Эксперименты выполнены на магнитном масс-спектрометре МИ1201, переоборудованном для высокотемпературных термодинамических исследований. Теоретическое исследование выполнено с привлечением теории функционала плотности (DFT).

Научная новизна.

- Впервые к изучению высокотемпературных систем применен комплексный подход экспериментальные масс-спектрометрические исследования проводились совместно с современными квантово-химическими расчетами.
- Впервые экспериментально и теоретически изучены ионные компоненты насыщенного пара над бромидом натрия, определены энтальпии образования заряженных компонент и энтальпии ионно-молекулярных реакций с их участием.
- Впервые для кристаллов бромида натрия определена работа выхода электрона.
- На примере бромида натрия предложена и реализована новая методика определения абсолютных парциальных давлений ионов в насыщенном паре неорганических соединений.
- С привлечением теории функционала электронной плотности (DFT) проведены структурные исследования трибромидов лантана и лютеция и определены их молекулярные параметры, по которым рассчитаны термодинамические функции молекул LnBr₃ в состоянии идеального газа. С новым набором функций уточнены энтальпии сублимации в форме мономерных и димерных молекул.
- Методами ВТМС и DFT впервые изучена термодинамическая стабильность аниона LaBr₄⁻ и предложена новая методика определения энтальпий образования тетра галогенид анионов LnX₄⁻.
- Впервые изучен молекулярный и ионный состав насыщенного пара над системами NaBr-LaBr₃ и NaBr-LuBr₃ и определены парциальные давления нейтральных компонентов высокотемпературного пара.
- Определены константы равновесия ионно-молекулярных реакций в бинарных системах, рассчитаны их энтальпии, и вычислены энтальпии образования впервые зарегистрированных комплексных молекул и ионов.
- Рассчитаны термодинамические активности индивидуальных компонент бинарных систем NaBr–LaBr₃ и NaBr–LuBr₃.
- Впервые теоретически исследованы структурные и энергетические характеристики гетерокомплексов NaLaBr₄ и NaLuBr₄.

Положения, выносимые на защиту:

- ионный состав пара над бромидом натрия, молекулярный и ионный состав пара над индивидуальными соединениями и бинарными системами NaBr–LnBr₃ (Ln = La, Lu);
- парциальные давления нейтральных составляющих пара над объектами исследования;
- набор рекомендованных термохимических величин (энтальпии сублимации, энтальпии ионно-молекулярных реакций, энергии диссоциации и энтальпии образования и молекул ионов в газообразном состоянии);
- термодинамические активности индивидуальных компонент систем NaBr-LaBr₃ и NaBr-LuBr₃;
- молекулярные параметры молекул и ионов, присутствующих в насыщенном паре над исследованными объектами;
- новая методика определения абсолютных парциальных давлений ионов в насыщенном паре неорганических соединений;

- новая методика определения энтальпий образования тетрагалогенид анионов лантаноидов LnX₄⁻;
- таблицы термодинамических функций для впервые зарегистрированных в паре молекул и ионов.

Надежность полученных результатов обоснована:

- применением отработанных экспериментальных и теоретических методик и подходов;
- воспроизводимостью результатов повторных измерений;
- строгостью и корректностью обработки экспериментальных данных, основанной на едином подходе к расчету термодинамических функций молекул и ионов;
- согласованностью в пределах погрешностей экспериментально полученных и теоретически рассчитанных величин, с одной стороны, и согласием с имеющимися литературными данными – с другой.

Практическая значимость. Полученные в работе термохимические величины могут быть использованы в термодинамических расчетах равновесий химических исследованных соединений реакций участием высокотемпературных с В технологических процессах, в частности в расчетах равновесий, при моделировании процессов, протекающих в металл-галогенидных лампах, с целью оптимизации технологии производства и улучшения их эмиссионных и эксплуатационных характеристик. Полученная в работе информация передана в Институт теплофизики экстремальных состояний объединенного института высоких температур РАН для пополнения базы данных по термодинамическим свойствам индивидуальных веществ ИВТАНТЕРМО. Результаты работы будут использованы в учебном процессе ИГХТУ при изложении соответствующих разделов курсов «Физической химии», «Строения вещества», «Высокотемпературной химии неорганических соединений».

Личный вклад автора. Вклад автора заключался в выполнении экспериментальных исследований, в проведении обработки результатов и оценки погрешностей измерений, в расчете термодинамических функций молекул и ионов, в расчете структурных и энергетических характеристик, а также в обсуждении полученных результатов.

Апробация работы. Результаты работы представлены на следующих конференциях: 220th ECS Meeting & Electrochemical Energy Summit in Boston, Massachusetts, USA 2011; XVIII International Conference on Chemical Thermodynamics in Russia (RCCT-2011). Russian, Samara 2011; «Дни науки – 2011». ИГХТУ, Иваново 2011; V Всероссийская конференция студентов и аспирантов с международным участием «Химия в современном мире». СПбГУ, Санкт-Петербург 2011; XVII International Conference on Chemical Thermodynamics in Russia (RCCT-2009). KSTU. Russian, Kazan 2009; Student's Scientific Circles Session in the 2008 at the Krakow University of Technology. PK. Poland, Krakow 2008; VII Региональная студенческая научная конференция с международным участием "Фундаментальные науки – специалисту нового века". ИГХТУ, Иваново 2008 г.; XVIII Менделеевский конкурс студентов химиков». БГТУ им. Шухова, Белгород 2008; XV Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов-2008», МГУ, Москва 2008; Всероссийский смотр-конкурс научно-технического творчества студентов высших учебных заведений «ЭВРИКА-2007». ЮРГТУ (НПИ), Новочеркасск 2007; VIII Всероссийская научно-практическая конференция студентов и аспирантов «Химия и химическая технология в XXI веке». ТПУ, Томск 2007; «Дни науки – 2007». ИГХТУ, Иваново 2007; III школа-семинар «Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул». ИвГУ, Иваново

2007; III съезд ВМСО «Масс-спектрометрия и ее прикладные проблемы». Π Всероссийская конференция с международным участием. Москва 2007: Ш Международный конгресс молодых ученых по химии и химической технологии «UCChT-2007-MKXT». РХТУ им. Менделеева, Москва 2007; XVI International Conference on Chemical Thermodynamics in Russia (RCCT-2007). Russian, Suzdal 2007; Российской Электронная конференция Академии Естествознания 2006: VI Региональная студенческая научная конференция с международным участием «Фундаментальные науки – специалисту нового века». ИГХТУ, Иваново 2006.

Публикации. Основные результаты работы изложены в 22 публикациях, из них 5 статей в рецензируемых профильных журналах и 17 тезисов докладов.

Структура и объём диссертации. Диссертация состоит из введения, 6 глав, выводов, списка цитированных отечественных и зарубежных литературных источников (221 наименования) и приложения. Общий объем диссертации составляет 143 страницы, включая 50 таблиц и 29 рисунков.

СОДЕРЖАНИЕ РАБОТЫ

Во введении представлено обоснование актуальности работы, сформулированы цели работы, описаны объекты и методы исследования, отмечены научная новизна, положения, выносимые на защиту, надежность полученных данных, практическая значимость, личный вклад автора и апробация работы.

Глава 1. Обзор литературы

Обзор литературы состоит из трёх разделов. Каждый раздел включает в себя описание экспериментальных и теоретических исследований по выбранным объектам, их термодинамических и структурных характеристик. В первом разделе рассмотрен бромид натрия, во втором – трибромиды лантана и лютеция и в третьем бинарные системы на основе галогенидов щелочных и редкоземельных металлов.

Глава 2. Основы высокотемпературной масс-спектрометрии

В этой главе кратко изложены основы метода высокотемпературной массспектрометрии (BTMC) и описано ее применение в термодинамических исследованиях.

Глава 3. Основы методов теории функционала плотности и метода связанных кластеров

В данной главе кратко описан метод теории функционала плотности (DFT), который был использован в данной работе с целью теоретического изучения объектов.

Глава 4. Аппаратура и методика исследования

Работа выполнена на серийном магнитном масс-спектрометре секторного типа (угол 90°, радиус кривизны 200 мм) МИ1201, реконструированном для проведения высокотемпературных термодинамических исследований. Комбинированный источник ионов позволял работать в двух режимах (ИЭ - ионизация электронами и ТИ термическая ионизация) и проводить анализ как нейтральных, так и заряженных компонент насыщенного пара. Испарение порошкообразных препаратов NaBr, LaBr₃, LuBr₃ и бинарных систем на их основе производилось из эффузионных ячеек, выполненных из молибдена или графита, с отношением площади поперечного сечения MM^2) ячейки эффузионного (Ø 0,6 около 400. к площади отверстия Поликристаллические порошкообразные образцы трибромидов лантана и лютеция синтезированы по NH₄Br-методике и имели степень чистоты 99,99%. Бромид натрия имел квалификацию х.ч.

Глава 5. Детали квантово-химических расчетов

Расчеты выполнены в рамках теории функционала электронной плотности в варианте B3LYP (DFT/B3LYP) с использованием программы PC GAMESS. В состав атомных остовов, описанных при помощи релятивистский эффективных потенциалов, были включены электроны на орбиталях $1s^2$, $2s^2$, $2p^6$, $3s^2 3p^6 3d^{10}$ (Br, Ln) и $4s^2 4p^6 4d^{10}$ (Ln). Непосредственно учитываемые в расчете электроны были описаны корреляционно согласованным валентно-трехэкспонентным базисом сс-pVTZ – Na и валентно-трехэкспонентными базисами pVTZ (7s 6p 5d / 5s 4p 3d) – Ln и (14s 10p 2d 1f / 3s 3p 2d 1f) – Br, дополненными поляризационными функциями f-типа на атоме Ln (5f / 3f) и одноэкспонентными наборами диффузных s-, p-, d- и f-функций на атоме Br.

Бромид натрия

Глава 6. Результаты и обсуждение

Нейтральные компоненты. В масс-спектре ИЭ в интервале температур 767 – 1007 К в насыщенном паре над бромидом натрия зарегистрированы ионы Na⁺(44), NaBr⁺(100), Na₂Br⁺(53) (в скобках приведены относительные интенсивности ионных токов при энергии ионизирующих электронов 70 эВ и T = 902 К), образующиеся соответственно при ионизации мономерных (Na⁺, NaBr⁺) и димерных (Na₂Br⁺) молекул. По стандартной масс-спектрометрической методике ИЭ определены парциальные давления (*p*, Па) мономерных и димерных молекул, температурные зависимости которых аппроксимированы линейными уравнениями (со знаком ± приведено стандартное отклонение):

$$\ln p(\text{NaBr}) = (-22,19 \pm 0,39) \cdot 10^3 / T + 12,80 \pm 0,47;$$
(1)

$$\ln p(\text{Na}_2\text{Br}_2 = (-25,58 \pm 0,66) \cdot 10^3 / T + 15,00 \pm 0,78.$$
(2)

Полученные парциальные давления использованы расчета энтальпии ДЛЯ сублимации бромида натрия В форме мономерных и димерных молекул методикам по второго третьего И законов термодинамики. Рассчитанные величины (Табл. 1) пределах В погрешностей согласуются с соответствующими энтальпиями сублимации, рекомендованными авторами справочника [1], что является ОДНИМ ИЗ критериев надежности получаемых работе В результатов.

мономерных и димерных молекул					
		$\Delta_{\rm s} H^{\rm o}(0),$			
Реакция		кДж∙моль⁻¹	[1]		
		[данная работа]			
$N_0 D_r - N_0 D_r$	II 3-н	200 ± 7	217 ± 2		
$\operatorname{INADI}_{\mathrm{KP}} = \operatorname{INADI}$	III з-н	221 ± 10	217 ± 3		
MaDa Na Da	II 3-н	II з-н 233±11			
$2\ln aBr_{\kappa p} = \ln a_2Br_2$	III з-н	255 ± 20	245 ± 7		

Табл. 1. Энтальпии сублимации NaBr в виде

Примечания. 1). Необходимые вычислений для термодинамические функции NaBr_{кр}, NaBr и Na₂Br₂ (газ) взяты из [1]. 2). Со знаком «±» для величин, рассчитанных по II закону, здесь и далее приводится статистическая погрешность, соответствующая 95% доверительному интервалу; по III закону – предельная погрешность, учитывающая статистическую погрешность И систематические погрешности в температуре, давлении и функциях приведенной энергии Гиббса.

Заряженные компоненты. В масс-спектре ТИ в интервале температур 794–1000 К наряду с атомарным ионом Na⁺(37) зарегистрированы ионные ассоциаты Na₂Br⁺(100), Na₃Br₂⁺(2) и Na₄Br₃⁺(<1) (в скобках приведены относительные интенсивности ионных токов для T = 1000 К). При существенно более высоких температурах (>1300 К) в масс-

спектре на пределе чувствительности были идентифицированы сигналы отрицательных ионов Br⁻ и NaBr₂⁻.Измерены температурные зависимости констант равновесия гетерогенных ионно-молекулярных реакций (I) и (II) (Табл. 2), и по второму и третьему законам термодинамики рассчитаны энтальпии этих реакций, а также энтальпии образования соответствующих ионов. Необходимые для вычислений функции ионов рассчитаны в приближении «жесткий ротатор – гармонический осциллятор» по молекулярным постоянным, полученным в данной работе.

<u>№</u> п/п	Реакция	$\Delta_{\rm r} H^{\rm o}($ BT	0), кДж∙моль МС	-1 DET	$\Delta_f H^{\circ}(0)$
11/11		II закон	III закон	DFI	кдж•моль
Ι	$Na_2Br^+ = Na^+ + NaBr_{\kappa p}$	- 33 ± 7	-44 ± 14	-	
II	$Na_3Br_2^+ = Na_2Br^+ + NaBr_{kp}$	-29 ± 22	-28 ± 32	-	
III	$Na_2Br^+ = Na^+ + NaBr$	167 ± 8	173 ± 14	182	285 ± 10
IV	$Na_3Br_2^+ = Na_2Br^+ + NaBr$	171 ± 22	189 ± 32	149	-2 ± 40
V	$NaBr_2^- = Br^- + NaBr$	-	-	200	-544 ± 10
VI	$Na_2Br_3^- = NaBr_2^- + NaBr_2^-$	-	-	142	-823 ± 40

	~ /	•	n. v					U U		~		
11	аол. 🖌	2.	Энтальпии	ионно-молек	уляр	ных	реакци	ИИ И	энтальпии	oor	разования	ИОНОВ.

Работа выхода электрона. Исследование ионной сублимации позволило впервые определить работу выхода электрона кристаллического бромида натрия по методике, описанной в [2]. Расчет ϕ_e выполнен на основе термохимического цикла (Рис.1) по уравнению:

 $\varphi_{\rm e} = 3/2\Delta_{\rm s}H^{\circ} + 1/2D_{\rm o} + I_{\rm o} - \Delta_{\rm des}H^{\circ} - \Delta_{\rm r}H^{\circ}, \tag{3}$

где $\Delta_{\rm s} H^{\circ}$, $D_{\rm o}$ – энтальпия сублимации и энергия диссоциации NaBr соответственно, $I_{\rm o}$ – энергия ионизации атома Na, $\Delta_{\rm des} H^{\circ}$ – энтальпия десорбции иона Na₂Br⁺, $\Delta_{\rm r} H^{\circ}$ – энтальпия отрыва Na⁺ от иона Na₂Br⁺.

$Na_2Br^+ + Br + \bar{e}$	$\Delta_{ m r} H^{\circ}$	NaBr + Na	$a^+ + Br + \bar{e}$
$\Delta_{\rm des}H^{\circ}({\rm Na}_{2}{\rm Br}^{+}) + 0.5[\Delta_{\rm s}H^{\circ}]$	$(NaBr) + D_{o}(NaBr)] +$	D _o (NaBr)	I _o (Na)
$2NaBr_{\kappa p} \qquad 2\Delta_{s}H^{c}$	2NaBr	Na +	Br + NaBr

Рис. 1. Термохимический цикл для расчета работы выхода электрона.

Величина $\Delta_{des}H^{\circ}$ определена экспериментально в режиме ТИ по угловому наклону температурной зависимости $\ln(IT^{1/2}) = f(1/T)$ термоэмиссионного тока (I) иона Na₂Br⁺. Энтальпия отрыва Na⁺ от иона Na₂Br⁺ ($\Delta_r H^{\circ}$) получена на основе квантово-химических расчетов (см. ниже). Рассчитанное значение работы выхода электрона составило $\varphi_e = 4.9 \pm 0.2$ эВ.

Теоретическое исследование. Проведенные расчеты показали, что димерной молекуле Na₂Br₂ отвечает плоская структура симметрии D_{2h} . Для трехатомных ионов Na₂Br⁺ и NaBr₂⁻ равновесной структуре соответствуют линейные конфигурации симметрии $D_{\infty h}$. При исследовании пятиатомных ионов Na₃Br₂⁺ и Na₂Br₃⁻ было изучено три возможных геометрических конфигурации: линейная структура симметрии $D_{\infty h}$, плоская циклическая симметрии C_{2v} , а также бипирамидальная структура симметрии D_{3h} . Для всех рассмотренных геометрических конфигураций была выполнена оптимизация геометрических параметров и рассчитаны колебательные спектры. Результаты расчетов показали, что все конфигурации являются изомерными, за исключением линейной структуры симметрии $D_{\infty h}$ иона Na₂Br₃⁻, в спектре которой определена мнимая частота. Дальнейшие расчеты привели к изомеру Na₂Br₃⁻

симметрии C_{2v} V-образной конфигурации. Установлено, что энергетически выгодными для ионов Na₃Br₂⁺ и Na₂Br₃⁻ являются соответственно структуры D_{3h} и C_{2v} .

Сопоставление результатов экспериментального и теоретического исследования проведено в Табл. 2. Как видно из этой таблицы, экспериментальное значение энтальпии реакции (III), ниже теоретически рассчитанной величины. Аналогичная ситуация наблюдалась ранее авторами [3] для фторида лития. Причина такого расхождения заключается в том, что в случае исследования ионно-молекулярных равновесий с участием ионов M⁺ измеряемые отношения ионных токов M⁺/M₂X⁺ содержат некоторую систематическую погрешность, связанную с регистрацией ионов М⁺ не только из самой ячейки, но и с наружной поверхности ее крышки. По этой причине предпочтение отдается величине, полученной с использованием квантовохимических расчетов. Комбинация энтальпий ионно-молекулярных реакций с приводит образования энтальпией образования NaBr к энтальпиям ионов. представленных в той же таблице.

Расчет состава пара. На основе комплексного подхода, заключающегося в комбинации экспериментально измеренных констант равновесия ионно-молекулярных реакций с результатами квантово-химических расчетов структуры, молекулярных параметров и энергетических характеристик молекул и ионов, на примере бромида натрия предложена методика определения абсолютных парциальных давлений всех составляющих равновесного пара.

В основе расчета лежит система уравнений, включающая в себя шесть уравнений для констант равновесий реакций (4)–(9) и два уравнения Саха-Лэнгмюра (10) и (11)

NaBr_{kp.} = NaBr, $K_1 = p(NaBr)$ 2NaBr_{kp.} = Na₂Br₂, $K_2 = p(Na_2Br_2)$ NaBr_{kp.} + Na⁺ = Na₂Br⁺, $K_3 = p(Na_2Br^+)/p(Na^+)$ 2NaBr_{kp.} + Na⁺ = Na₃Br₂⁺, $K_4 = p(Na_3Br_2^+)/p(Na^+)$ NaBr_{kp.} + Br⁻ = NaBr₂⁻, $K_5 = p(NaBr_2^-)/p(Br^-)$ 2NaBr_{kp.} + Br⁻ = Na₂Br₃⁻, $K_6 = p(Na_2Br_3^-)/p(Br^-)$

где Q – полная статистическая сумма состояний частицы; $I_0(Na)$ и $A_0(Br)$ – энергия ионизации атома Na и сродство к электрону атома Br соответственно.

В расчете состава пара использованы также уравнение конгрузнтности испарения p(Na)/p(Br) = 1 (12)

и давления электронов

$$p_{\rm e} = \frac{2(2\pi m_{\rm e})^{3/2} (kT)^{5/2}}{h^3} \cdot \exp\left(-\frac{\varphi}{kT}\right).$$
(13)

Результаты расчетов представлены в Табл 3. Как видно таблицы. ИЗ значения парциальных давлений отрицательных ионов получаются на 7 – 8 порядков ниже величин положительных лавлений ионов. что находится В соответствии с экспериментальными результатами отрицательные ионы NaBr2⁻ и Br⁻ не были зарегистрированы в диапазоне температур 794 – 1000 К.

(4)	$p(Na^+) = Q(Na^+) \exp \varphi - I_0(Na)$ (10)
(5)	$\frac{1}{p(Na)} - \frac{1}{Q(Na)} \exp \frac{1}{\kappa T}, (10)$
(6)	$p(Br^{-}) O(Br^{-}) A_{\alpha}(Br) - \boldsymbol{\varphi}$
(7)	$\frac{P(r,r)}{p(Rr)} = \frac{\mathcal{L}(r,r)}{O(Rr)} \exp \left(\frac{-\theta(r,r)}{\kappa T}\right), (11)$
(8)	$p(\mathbf{D}) = \mathcal{Q}(\mathbf{D})$
(9)	

Табл. 3. Парциальные давления
компонент насыщенного пара над
NaBr.

Компо-		л Па	
нента		<i>p</i> , 11a	
	800 K	900 K	1000 K
Na	$1.7 \cdot 10^{-13}$	$2.1 \cdot 10^{-11}$	$9.4 \cdot 10^{-10}$
Br	$1.7 \cdot 10^{-13}$	$2.1 \cdot 10^{-11}$	$9.4 \cdot 10^{-10}$
NaBr	$4.8 \cdot 10^{-7}$	$1.5 \cdot 10^{-5}$	$2.3 \cdot 10^{-4}$
Na_2Br_2	$1.4 \cdot 10^{-7}$	6.3·10 ⁻⁶	$1.2 \cdot 10^{-4}$
Na^+	$4.7 \cdot 10^{-15}$	$7.8 \cdot 10^{-13}$	$4.6 \cdot 10^{-11}$
Br	$1.2 \cdot 10^{-23}$	$1.7 \cdot 10^{-20}$	$6.0 \cdot 10^{-18}$
Na_2Br^+	$1.4 \cdot 10^{-13}$	$3.6 \cdot 10^{-11}$	$2.9 \cdot 10^{-9}$
$Na_3Br_2^+$	$3.9 \cdot 10^{-18}$	$2.7 \cdot 10^{-15}$	$4.6 \cdot 10^{-13}$
$NaBr_2$	$4.6 \cdot 10^{-22}$	$7.8 \cdot 10^{-19}$	$2.8 \cdot 10^{-16}$
$Na_2Br_3^-$	$7.9 \cdot 10^{-23}$	$4.1 \cdot 10^{-19}$	$3.7 \cdot 10^{-16}$
e	$9.9 \cdot 10^{-26}$	$3.8 \cdot 10^{-22}$	$2.8 \cdot 10^{-19}$

Примечание. Погрешность в парциальных давлениях заключена в пределах одного порядка.

Трибромиды лантана и лютеция

С целью проверки надёжности получаемых в результате комплексного подхода данных было проведено повторное масс-спектрометрическое исследование LuBr₃. В масс-спектре ИЭ в интервале температур 875 – 1045 К в насыщенном паре над трибромидом лютеция зарегистрированы ионы $Lu^{+}(8)$, $LuBr_{2}^{+}(7)$, $LuBr_{2}^{+}(50)$, $LuBr_{3}^{+}(26)$, $Lu_2Br_5^+(8)$ (в скобках приведены относительные интенсивности ионных токов, E = 70эВ, T = 949 К), образующиеся при ионизации мономерных (Lu⁺, LuBr⁺, LuBr⁺, LuBr⁺, LuBr⁺) и димерных ($Lu_2Br_5^+$) молекул.

По стандартной масс-спектрометрической методике ИЭ определены парциальные давления (р, Па) нейтральных компонент, температурные зависимости которых аппроксимированы линейными уравнениями:

$$\ln p(\text{LuBr}_3) = (-32,75 \pm 0,53) \cdot 10^3 / T + 21,46 \pm 0,56;$$
(14)
$$\ln p(\text{Lu}_2\text{Br}_6) = (-40,26 \pm 0,66) \cdot 10^3 / T + 26,28 \pm 0,69$$
(15)

$$\ln p(\mathrm{Lu}_2\mathrm{Br}_6) = (-40,26 \pm 0,66) \cdot 10^3 / T + 26,28 \pm 0,69$$

и по второму и третьему законам термодинамики рассчитаны энтальпии сублимации в форме мономеров и димеров.

В вычислениях использованы термодинамические функции молекул, рассчитанные по молекулярным параметрам, полученных методом DFT (см. ниже). Сравнение энтальпий сублимации (Табл.4), полученных по экспериментальным данным разных авторами с использованием различных молекулярных параметров позволяет сделать данные вывод 0 том, что настоящей работы дают лучшее $\Delta_{\rm s} H^{\rm o}$, согласие величин двумя рассчитанных независимыми методами.

Табл.	4.	Энтальпия	сублимации
трибром	ида лю	теция.	
	LuBr _{3кр.}	=LuBr ₃	
$\Delta_{ m s}$	$H^{0}(0), \kappa$	Дж∙моль⁻¹	Источник
II за	кон	III закон	
280	- 5	$290 \pm 12^{(*)}$	данная
289	± 3	$280 \pm 12^{**)}$	работа
273	+ 2	$285 \pm 12^{*)}$	[4]
215	<u> </u>	$276 \pm 12^{**}$	[4]
285	+ 0	$287 \pm 12^{*)}$	[5]
205	± 9	$276 \pm 12^{**}$	
281	+ 11	$282 \pm 12^{*)}$	[6]
201	- 11	$267 \pm 12^{**)}$	[U]

Примечание. ^{*)} Термодинамические функции рассчитаны по молекулярным постоянным из данной работы. ** Термодинамические функции рассчитаны по молекулярным постоянным из работы [7].

Теоретическое исследование.

Методом DFT/B3LYP изучены молекулы LaBr₃ и LuBr₃, а также ионы LaBr₄ и LuBr₄⁻. При исследовании молекул трибромидов рассмотрены две конфигурации (симметрии C_{3v} и D_{3h}). Минимумам полной энергии отвечает структура C_{3v} для молекулы LaBr₃ с валентным углом, близким к 120°, и плоская D_{3h} для LuBr₃. Энергия конфигурации C_{3v} для трибромида лантана оказалась ниже энергии D_{3h} структуры всего на 9 Дж/моль. Это позволяет рассматривать молекулу LaBr₃ как квазиплоскую. Оптимизация геометрических параметров ионов LaBr₄ и LuBr₄ проведена для *T*_d. Значения конфигурации ядер симметрии тетраэдрической равновесных межъядерных расстояний, валентных углов и частот нормальных колебаний, активных в ИК-спектре, для молекул и ионов приведены в Табл. 5. Проведенные квантовохимические расчеты позволили определить энергию диссоциации ионов LnBr₄⁻ (Табл.6). Рассчитанные величины хорошо согласуются с экспериментальными значениями.

Табл.	5.	Мол	екулярны	e i	параме	тры	И
колеба	телі	ьные	спектры	MO	лекул	LnBr ₃	И
$LnBr_{4}^{-}$							

Табл. 6. Энтальпии реакций образования отрицательных ионов.

4 .					_			
	LaBr ₃	LuBr ₃	LaBr ₄ ⁻	LuBr ₄ ⁻	N⁰		Δ_r	$H^{\mathrm{o}}(0),$
параметр	(C_{3v})	(D_{3h})	$(T_{\rm d})$	$(T_{\rm d})$	п/п	Реакция	кДж	\cdot моль $^{-1}$
$R_{\rm e}({\rm Ln-Br})$, Å	2.764	2.580	2.845	2.655	-		DFT	BTMC
$\alpha_{\rm e}({\rm BrLnBr})$, ^o	119.5	120	109.5	109.5	VII	$LaBr_4 = Br_4 +$	202	200 + 14
	10	28	165	176	-	LaBr ₃	303	302 ± 14
ω_i , cm^{-1}	187	200	39	50	VIII	$LuBr_{4} = Br_{4} +$	• • • •	
	44	242	50	59		$L_{11}Br_2$	309	327 ± 20
	233	51	196	202		Labiy		

Бинарные системы

Экспериментальное исследование систем

Бинарные системы NaBr–LnBr₃ (Ln = La, Lu) готовилась in situ в ячейке Кнудсена в процессе нагревания механической смеси порошков бромида натрия и трибромидов лантаноидов в соотношении 1:1.

Нейтральные компоненты пара

В масс-спектрах ИЭ в температурных интервалах 870 - 1141 K (La) и 812 - 998 K (Lu) были зарегистрированы ионы Na⁺, NaBr⁺, Na₂Br⁺, Na₃Br₂⁺ Ln⁺, LnBr⁺, LnBr₂⁺, LnBr₃⁺, Ln₂Br₅⁺, NaLnBr₂⁺, NaLnBr₃⁺, NaLnBr₄⁺ и Na₂LnBr₄⁺.

Расшифровка масс-спектров проведена в предположении, что ионы NaBr⁺, Na₂Br⁺, Na₃Br₂⁺, Na₂LnBr₄⁺ и Ln₂Br₅⁺ имеют только одного молекулярного предшественника, а именно NaBr, Na₂Br₂, Na₃Br₃, Na₂LnBr₅ и Ln₂Br₆ соответственно. Вкладами от диссоциативной ионизации молекул Na₂Br₂, Na₂LnBr₅ и Ln₂Br₆ можно пренебречь. Данные о фрагментации молекул NaBr и LnBr₃ взяты из результатов экспериментов с индивидуальными соединениями. Вклады в интенсивности ионных токов Na⁺, Ln⁺, LnBr⁺, LnBr₂⁺, LnBr₃⁺, которые могут образовываться как в процессе ионизации молекул NaBr и LnBr₃, так и гетерокомплексных молекул NaLnBr₄, определены на основе регрессионного анализа отношений ионных токов.

Парциальные давления нейтральных компонент насыщенного пара рассчитаны стандартной по массспектрометрической методике аппроксимированы EИ И линейными уравнениями, коэффициенты которых приведены в Табл.7.

Табл.	7.	Коэффициенть	ы температурных	-		
зависим	остей	парциальных д	цавлений компонент			
систем (<i>р</i> в атм).						

Cuerana	Компо-	$\ln p = -a$	$(-10^{3}/T + b)$			
Система	нент	а	b			
	NaBr	$18{,}50\pm0{,}88$	$9,51 \pm 0,96$			
NoPr LoPr	LaBr ₃	$29,04 \pm 1,46$	$15,32 \pm 1,55$			
NaDI-LaDI3	NaLaBr ₄	$32,87 \pm 1,65$	$21,66 \pm 1,79$			
	Na ₂ LaBr ₅	$19,34 \pm 3,77$	$1,\!27 \pm 3,\!96$			
	NaBr	$22,86 \pm 1,33$	$12,\!88 \pm 1,\!49$			
NoBr LuBr	LuBr ₃	$25,03 \pm 1,00$	$13,52 \pm 1,22$			
NaDI–LuDI ₃	NaLuBr ₄	$22,61 \pm 1,08$	$12,73 \pm 1,20$			
	Na ₂ LuBr ₅	$18,\!70\pm1,\!94$	$2{,}47 \pm 2{,}08$			

Константы равновесия. На основе рассчитанных парци-альных давлений компонент пара определены константы равновесия следующих реакций:

$$NaLnBr_{4} = NaBr + LnBr_{3}, \ K_{p}^{0} = \frac{p(NaBr) \cdot p(LnBr_{3})}{p(NaLnBr_{4})},$$
(16)

Na₂LnBr₅ = 2NaBr + LnBr₃,
$$K_p^0 = \frac{p(NaBr)^2 \cdot p(LnBr_3)}{p(Na_2LnBr_5)}$$
. (17)

Зависимости констант равновесия реакций от температуры аппроксимированы линейными уравнениями, коэффициенты которых даны в Табл. 8.

Табл. 8. Коэффициенты температурных зависимостей констант равновесия реакций.

N⁰	Booking	$\ln K_{\rm p} = -a \cdot 10^3 / T + b$		
Π/Π	Геакция	a	b	
IX	$NaLaBr_4 = NaBr + LaBr_3$	$25,06 \pm 1,95$	$13,91 \pm 2,06$	
Х	$Na_2LaBr_5 = 2NaBr + LaBr_3$	$53,77 \pm 5,38$	$38,59 \pm 5,65$	
XI	$NaLuBr_4 = NaBr + LuBr_3$	$24,\!99 \pm 1,\!44$	$13,26 \pm 1,61$	
XII	$Na_2LuBr_5 = 2NaBr + LuBr_3$	$38,12 \pm 4,37$	$21,\!61 \pm 4,\!73$	

Энтальпии реакций (IX-XII) рассчитаны по методикам второго и третьего законов термодинамики и приведены в Табл. 9. Там же представлены энтальпии образования комплексных молекул.

Табл. 9. Энтальпии реакций и энтальпии образования комплексных молекул при *T* = 298 К.

No	Реакция	Δ <i>T</i> , K; <i>N</i>	$\Delta_{r}H^{\circ}$, кДж·моль ⁻¹		$-\Delta_{f}H^{\circ},$
П/П			II закон	III закон	кДж·моль ⁻¹
IY	NaLaBr = NaBr + LaBr	870 11/11 16	218 ± 17	$228\pm~30$	058 ± 35
IA	4^{-1}	870–1141, 10	DFT: 196		930 <u>-</u> 33
V	NaLuBr = NaBr + LuBr	812_972.20	215 ± 12	220 ± 30	892 + 35
Х	$\frac{1}{4}$	012-772, 20	DFT: 211		072 ± 33
XI	$Na_2LaBr_5 = 2NaBr + LaBr_3$	921–1004; 9	474 ± 45	471 ± 40	1347 ± 50
XII	$Na_2LuBr_5 = 2NaBr + LuBr_3$	879–998; 13	330 ± 36	$326\ \pm 40$	1157 ± 50

Термодинамические функции. Необходимые для расчета термодинамические функции молекулы NaBr в состоянии идеального газа взяты из [1] а для LnBr₃ и NaLnBr₄ были рассчитаны в приближении «жесткий ротатор – гармонический осциллятор» по молекулярным параметрам, полученным в данной работе в результате квантовохимических расчетов. Для более сложных гетерокомплексных молекул и ионов термодинамические функции рассчитывались по соотношению:

$$T\Phi(\mathbf{A}_{n}\mathbf{B}_{m}) = \beta \cdot [n \cdot T\Phi(\mathbf{A}) + m \cdot T\Phi(\mathbf{B})], (n, m = 0, 1, 2, ...)$$

$$(18)$$

где $T\Phi(A_nB_m)$ – термодинамические функции $\Phi^{\circ}(T)$ или $H^{\circ}(T)$ – $H^{\circ}(0)$

гетерокомплексной молекулы или иона, образованного из компонентов A и B; β – поправочный коэффициент, зависящий от температуры и природы гетерокомплексной частицы.

Заряженные компоненты пара

В режиме ТИ в насыщенном паре над системами NaBr–LaBr₃ и NaBr–LuBr₃ в интервале температур 1019 – 1184 К (La) и 927 – 1065 К (Lu) зарегистрированы положительные Na⁺, Na₂Br⁺, Na₃Br₂⁺, Na₂LnBr₄⁺, Na₃LnBr₅⁺ и отрицательные Br⁻, LnBr₄⁻, Ln₂Br₇⁻, NaLnBr₅⁻ ионы.

С участием зарегистрированные молекул и ионов изучены ионно-молекулярные реакции, параметры температурных зависимостей констант равновесия которых приведены в (Табл. 10), а результаты расчета энтальпий реакций и энтальпий образования ионов – в Табл. 11.

поппо молекулярных реакции.					
Деоклия	$\ln K_{\rm p} = -a \cdot 10^3 / T + b$				
т сакция	a	b			
$Na_2LaBr_4^+ = Na_2Br^+ + LaBr_3$	$23,20 \pm 3,86$	$15,93 \pm 3,64$			
$Na_{3}LaBr_{5}^{+} = Na_{3}Br_{2}^{+} + LaBr_{3}$	$28,86 \pm 3,64$	$18,82 \pm 3,73$			
$NaLaBr_{5}^{-} = LaBr_{4}^{-} + NaBr$	$19,01 \pm 1,83$	$15,\!64 \pm 1,\!62$			
$Na_2LuBr_4^+ = Na_2Br^+ + LuBr_3$	$20,33 \pm 3,42$	$16,18 \pm 3,49$			
$Na_3LuBr_5^+ = Na_3Br_2^+ + LuBr_3$	$18,\!87 \pm 10,\!47$	$16,\!81 \pm 10,\!63$			
$NaLaBr_5^- = LaBr_4^- + NaBr_5^-$	$20,\!05\pm1,\!22$	$17,06 \pm 1,18$			
$\frac{\text{NaLaBr}_{5} = \text{LaBr}_{4} + \text{NaBr}}{\text{Na}_{2}\text{LuBr}_{4}^{+} = \text{Na}_{2}\text{Br}^{+} + \text{LuBr}_{3}}$ $\frac{\text{Na}_{3}\text{LuBr}_{5}^{+} = \text{Na}_{3}\text{Br}_{2}^{+} + \text{LuBr}_{3}}{\text{NaLaBr}_{5}^{-} = \text{LaBr}_{4}^{-} + \text{NaBr}}$	$\begin{array}{r} 19,01 \pm 1,83 \\ \hline 20,33 \pm 3,42 \\ 18,87 \pm 10,47 \\ 20,05 \pm 1,22 \end{array}$	$\frac{15,64 \pm 1,62}{16,18 \pm 3,49}$ $16,81 \pm 10,63$ $17,06 \pm 1,18$			

Табл. 10. Коэффициенты температурных зависимостей констант равновесия ионно-молекулярных реакций.

Табл. 11. Энтальпии реакций и энтальпии образования комплексных ионов при *T* = 298 К.

N⁰	Реакция	$\Delta T, \mathrm{K}; N$	$\Delta_{r} H^{\circ}$, кДж·моль ⁻¹		$-\Delta_f H^\circ$,
п/п	Теакция		II закон	III закон	кДж·моль ⁻¹
XIII	$Na_2LaBr_4^+ = Na_2Br^+ + LaBr_3^-$	1019–1131; 10	210 ± 33	215 ± 31	1084 ± 35
XIV	$Na_{3}LaBr_{5}^{+} = Na_{3}Br_{2}^{+} + LaBr_{3}^{-}$	1019–1103; 6	227 ± 30	257 ± 50	843 ± 55
XV	$NaLaBr_5^{-} = NaBr + LaBr_4^{-}$	1085–1184; 14	170 ± 17	172 ± 30	1423 ± 30
XVI	$Na_2LuBr_4^+ = Na_2Br^+ + LuBr_3$	927–1012; 7	179 ± 30	175 ± 27	996 ± 35
XVII	$Na_{3}LuBr_{5}^{+} = Na_{3}Br_{2}^{+} + LuBr_{3}^{-}$	956–1012; 6	178 ± 50	191 ± 50	729 ± 50
XVIII	$NaLuBr_5 = NaBr + LuBr_4$	998–1065; 9	177 ± 15	173 ± 30	1404 ± 35

Исследование структуры комплексных молекул

В работе проведено квантово-химическое исследование геометрического строения и энергетической стабильности молекул NaLnBr₄. Рассмотрены три геометрические конфигурации (Рис. 2): m – монодентатная (C_{3v}), b – бидентатная (C_{2v}) и t – тридентатная (C_{3v}). Расчеты показали, что би- и тридентатная конфигурации отвечают минимумам на поверхности потенциальной энергии (ППЭ) молекул.

Рис 2. Геометрические конфигурации комплексов NaLnBr₄.

Энергия тридентатной конфигурации ниже на 10 Дж·моль⁻¹ в случае с комплекса с La и на 4 кДж·моль⁻¹ для Lu. Монодентатная конфигурация соответствует седловой точке второго порядка на ППЭ в обоих случаях. Величины рассчитанных геометричепараметров энергетических ских И характеристик гетерокомплексов NaLnBr₄ приведены в Табл. 12.

Парамотр	NaLaBr ₄		NaLuBr ₄		
Параметр	C_{2v}, b	C_{3v}, t	C_{2v}, b	C_{3v}, t	
$R_e(\text{LnBr}_b), \text{\AA}$	2.939	2.871	2.729	2.674	
$R_e(\text{LnBr}_t), \text{\AA}$	2.777	2.790	2.597	2.583	
$R_e(\text{NaBr}_b), \text{\AA}$	2.741	2.930	2.747	2.927	
$\alpha_e(\mathrm{Br}_b\mathrm{LnBr}_b),^{\mathrm{o}}$	89.4	90.0	95.2	118.1	
$\alpha_e(\mathrm{Br}_b\mathrm{LnBr}_t),^{\mathrm{o}}$	112.3	125.3	111.0	121.0	
μ_e , D	9.5	5.9	10.1	6.9	
h , кДж·моль $^{-1}$	0.01	0	3.63	0	

Табл. 12. Молекулярные параметры би- и тридентатной конфигураций NaLnBr₄.

Барьер инверсии. Для комплекса NaLaBr₄ была рассмотрена кривая миграции катиона Na⁺ вокруг фрагмента [LaBr₄⁻] и определен энергетический барьер,

отделяющий одну конфигурацию от другой равный 8 кДж·моль⁻¹.

Основные результаты работы

- Впервые проведено комплексное масс-спектрометрическое и квантово-химическое исследование термодинамических свойств молекул и ионов, присутствующих в насыщенном паре над индивидуальными соединениями NaBr, LnBr₃ и бинарными системами NaBr-LnBr₃ (Ln = La, Lu).
- Экспериментально изучен состав пара над объектами исследования, определены парциальные давления нейтральных и заряженных компонент, измерены константы равновесия ионно-молекулярных реакций и с использованием второго и третьего законов термодинамики определены их энтальпии, на основе которых рассчитаны энтальпии образования впервые зарегистрированных молекул и ионов.
- С привлечением метода DFT рассчитаны геометрические параметры, энергетические характеристики и колебательные спектры зарегистрированных молекул и ионов и энтальпии ионно-молекулярных реакций. Впервые теоретически исследованы структурные и энергетические характеристики гетерокомплексов NaLaBr₄ и NaLuBr₄.
- Методами высокотемпературной масс-спектрометрии и неэмпирической квантовой химии впервые изучена термодинамическая стабильность аниона LaBr₄⁻ и предложена новая методика определения энтальпий образования тетрагалогенид анионов лантаноидов LaX₄⁻.
- Предложена новая методика определения абсолютных парциальных давлений ионов в насыщенном паре неорганических соединений.
- Рассчитаны термодинамические активности индивидуальных компонент бинарных систем NaBr-LnBr₃ (Ln = La, Lu).
- Представлены таблицы термодинамических функций для зарегистрированных в паре молекул и ионов.

Цитированные источники

[1] Термодинамические свойства индивидуальных веществ (Л.В. Гурвич, И.В. Вейц, В.А. Медведев и др., под общ. ред. В.П. Глушко – 3-е изд., перераб. и расшир. – М.: Наука, 1978–1984). [2] Бутман М.Ф., Кудин Л.С., Гришин А.Е., Крючков А.С., Сергеев Д.Н. // Журн. физ. химии. 2008. Т. 82. №3. С. 545. [3] Бутман М.Ф., Слизнев В.В., Кудин Л.С. // Журн. физ. химии. 2002. Т. 76, №1. С. 18. [4] Крючков А.С. Сублимация кристаллов трибромидов лантанидов (La, Ce, Pr, Ho, Er, Lu) в режимах Кнудсена и Ленгмюра по данным высокотемпературной масс-спектрометрии. /Автореф. дис... канд. хим. наук. Иваново: ИГХТУ, 2008; [5] Brunetti B., Villani A.R., Piacente V., Scardala P. // J. Chem. Eng. Data. 2006. V. 50. Р. 1801; [6] Махмадмуродов А., *Темурова М., Шарипов А.* // Известия АН Таджикской ССР, Отд. физ-мат., хим. и геолог. наук. 1989. Т. 111. №1. С. 39.; [7] *Kovacs A., Konings R.G.M.* // J. Phys. Chem. Ref. Data. 2004. V. 33. P. 377.

Основное содержание работы изложено в публикациях

- 1. Кудин Л.С., Иванов Д.А., Бутман М.Ф., Дунаев А.М. Новая методика определения абсолютных парциальных давлений ионов в насыщенном паре неорганических соединений // Журнал неорганической химии. 2011. Т. 56. № 8. С. 1382-1387.
- 2. Кудин Л.С., Иванов Д.А., Бутман М.Ф., Дунаев А.М. Масс-спектрометрическое и квантово-химическое исследование термодинамических свойств молекулярных и ионных компонент насыщенного пара над бромидом натрия // Вестник Казанского технологического университета. 2010. № 1. С. 172-176.
- 3. Бутман М.Ф., Кудин Л.С., Моталов В.Б., Иванов Д.А., Слизнев В.В., Кrämer К.W. Термодинамическая стабильность иона LaBr₄⁻ // Журнал физической химии. 2008. Т. 82, № 5, С. 885-890.
- 4. Иванов Д.А., Кудин Л.С., Слизнев В.В., Бутман М.Ф. Теоретическое исследование структурных и энергетических параметров молекул NaLaBr₄, LaBr₃ и иона LaBr₄⁻ // Известия вузов. Химия и химическая технология. 2008. Т. 51. № 3. С. 23-26.
- 5. Бутман М.Ф., Кудин Л.С, Слизнев В.В, Иванов Д.А. Экспериментальное и теоретическое исследование стабильности тетрабромид-аниона лантана LaBr₄⁻ // Современные наукоемкие технологии. 2007. № 1. С. 56-57.
- 6. Иванов Д.А. Масс-спектрометрическое исследование ионных компонент насыщенного пара над системами NaBr–LnBr₃ // Тезисы конференции «Дни науки 2011» ИГХТУ, Иваново 2011. С. 119.
- Иванов Д.А. Исследование нейтральных и заряженных компонент газовой фазы над бинарными системами бромидов щелочных и редкоземельных металлов» // Тезисы конференции. V Всероссийская конференция студентов и аспирантов с международным участием «Химия в современном мире». СПбГУ, Санкт-Петербург 2011. С. 467-468.
- Ivanov D.A., Kudin L.S., Butman V.F., Dunaev A.M. Quantum-Chemical Study Of Composition and Thermodynamic Properties of Gaseous Species over Sodium Bromide // Abstracts of XVII International Conference on Chemical Thermodynamics in Russia (RCCT-2009). Vol. 2. – Kazan: Innovation Publishing House «Butlerov Heritage» Ltd. 2009. P. 38.
- 9. Ivanov D.A. Quantum-chemical study of the structure and energy stability of LuBr₃, NaLuBr₄ molecules and LuBr₄⁻ ion // Abstracts of The Student's Scientific Circles Session in the 2008 at the Krakow University of Technology. PK, Poland, Krakow 2008. P. 100.
- 10. Иванов Д.А. Исследование перспективных соединений, используемых в технологии изготовления металл-галогенидных ламп // Тезисы докладов. XVII Менделеевская конференция молодых ученых. Белгород 2008. С.105.
- 11. Иванов Д.А. Теоретическое и экспериментальное исследование структуры и энергетики молекул LnBr₃, NaLnBr₄ и ионов LnBr₄⁻ (Ln = La, Lu) // Материалы XV Международной конференции студентов, аспирантов и молодых ученых «Ломоносов-2008» Москва, МГУ, 2008. С. 620.
- 12. Иванов Д.А. Квантово-химическое исследование структуры и энергетики молекул LuBr₃, NaLuBr₄ и иона LuBr₄⁻ // Материалы VII Региональной студенческой научной конференции с международным участием «Фундаментальные науки специалисту нового века». ИГХТУ. Иваново 2008. С. 26.
- 13. Иванов Д.А. Масс-спектрометрическое и квантово-химическое исследование термодинамических свойств компонент насыщенного пара над индивидуальными вещества NaBr, LaBr₃ и бинарной системой NaBr-LaBr₃ // Сборник конкурс работ

Всероссийского смотра-конкурса научно-технического творчества студентов высших учебных заведений «Эврика-2007». Новочеркасск 2007. С.186.

- 14. Иванов Д.А., Кудин Л.С., Бутман М.Ф. Масс-спектрометрическое определение состава и термодинамических свойств компонент насыщенного пара над NaBr, LaBr₃ и системой NaBr-LaBr₃ // Тезисы докладов. Ш съезд ВМСО "Масс-спектрометрия и ее прикладные проблемы". II Всероссийская конференция с международным участием. Москва 2007. С. HC-3.
- 15. Ivanov D.A., Kudin L.S., Vorobiev D.E., Sliznev V.V., Butman M.F. Experimental and Theoretical Study of the Structure and Thermodynamic Properties of Components of Saturated Vapor Over System NaBr-LaBr₃ // Abstracts of XVI International Conference on Chemical Thermodynamics in Russia (RCCT-2007). Suzdal 2007. P. 2/S-116.
- 16. Иванов Д.А., Кудин Л.С., Слизнев В.В., Бутман М.Ф., Воробьев Д.Е. Массспектрометрическое и квантово-химическое исследование структуры и термодинамических свойств компонентов насыщенного пара над системой NaBr– LaBr₃ // Тезисы. VIII Всероссийская научно-практическая конференция студентов и аспирантов "Химия и химическая технология в XXI веке". Томск 2007. С. 211.
- 17. Иванов Д.А. Теоретическое и экспериментальное определение структуры и энергетики компонентов пара NaBr // Материалы студенческой научной конференции ДНИ НАУКИ 2007 "Фундаментальные науки специалисту нового века". ИГХТУ. Иваново 2007. С. 396.
- 18. Иванов Д.А., Слизнев В.В., Кудин Л.С., Бутман М.Ф. Квантово-химическое и экспериментальное исследование термодинамической стабильности LaBr₄⁻ // Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул: III школа-семинар. ИвГУ. Иваново 2007. С. 85.
- 19. Иванов Д.А., Слизнев В.В., Кудин Л.С. Геометрическое строение и стабильность молекулы NaLaBr₄ по данным неэмпирической квантовой химии // Квантовохимические расчеты: структура и реакционная способность органических и неорганических молекул: III школа-семинар. ИвГУ. Иваново 2007. С. 84.
- 20. Иванов Д.А., Кудин Л.С., Слизнев В.В., Бутман М.Ф. Экспериментальное и теоретическое определение структуры и энергетики компонентов пара над бромидом натрия и трибромидом лантана // Успехи в химии и химической технологии. Сб. науч.тр. под ред.: П. Д. Саркисов, В. Б. Сажин. М.: РХТУ им. Д.И. Менделеева. Т.21 № 1 (69). 2007. С. 131–134.
- 21. Иванов Д.А. Квантово-химическое исследование энергетической стабильности и геометрического строения комплекса NaLaBr₄ // Тезисы докладов "Фундаментальные науки специалисту нового века". ИГХТУ. Иваново 2006. С. 35.
- 22. Иванов Д.А. Масс-спектрометрическое исследование состава насыщенного пара над бромидом натрия // Тезисы докладов "Фундаментальные науки специалисту нового века". ИГХТУ. Иваново2006. С. 34.