Пелевина Елена Дмитриевна

СТРОЕНИЕ КОМПЛЕКСОВ НИКЕЛЯ, МЕДИ И ЦИНКА С НЕКОТОРЫМИ ОСНОВАНИЯМИ ШИФФА ПО ДАННЫМ СИНХРОННОГО ЭЛЕКТРОНОГРАФИЧЕСКОГО/МАСССПЕКТРОМЕТРИЧЕСКОГО ЭКСПЕРИМЕНТА И КВАНТОВОХИМИЧЕСКИХ РАСЧЕТОВ

02.00.04 - физическая химия

Автореферат

диссертации на соискание ученой степени кандидата химических наук

Иваново - 2012

Работа выполнена в ФГБОУ ВПО «Ивановский государственный химико-технологический университет»

Научный руководитель: доктор химических наук, профессор

Гиричев Георгий Васильевич

Официальные оппоненты: доктор химических наук, профессор

Алиханян Андрей Сосович

(ФГБУН «Институт общей и неорганической

химии им. Н. С. Курнакова РАН»,

заведующий лабораторией спектральных

исследований и анализа)

доктор химических наук, профессор Исляйкин Михаил Константинович

(ФГБОУ ВПО «Ивановский государственный

химико-технологический университет», профессор кафедры технологии тонкого

органического синтеза)

Ведущая организация: ФГБОУ ВПО «Московский

государственный университет им. М. В. Ломоносова», Химический факультет, г.

Москва

Защита состоится « 26 » ноября 2012 г. в 10.00 часов на заседании диссертационного совета Д 212.063.06 при Ивановском государственном химико-технологическом университете по адресу: 153000, г. Иваново, пр. Ф. Энгельса, д. 7.

Тел.: (4932) 32-54-33, факс: (4932) 32-54-33, e-mail: dissovet@isuct.ru

С диссертацией можно ознакомиться в Информационном центре Ивановского государственного химико-технологического университета по адресу: 153000, г. Иваново, пр. Ф. Энгельса, д. 10.

Автореферат разослан « » октября 2012 г.

Ученый секретарь совета Д 212.063.06

e-mail: Egorova-D6@yandex.ru

Егорова Елена Владимировна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы: Повышенный интерес к детальному исследованию соединений 3d-металлов с основаниями Шиффа связан с тем, что эти комплексы обладают рядом ценных свойств, обусловливающих их практическое применение в различных областях науки, техники, в медицине. Например, эти уникальные соединения широко используются в качестве электролюминесцентных материалов, супрамолекулярных систем, молекулярных магнетиков, прекурсоров в МО CVD технологиях, катализаторов большого числа химических реакций. При этом свойства комплексов определяются природой и металла, и лиганда, в том числе, конформационными свойствами последнего. Сочетание в молекулах этих соединений ионов металлов и органических лигандов открывает возможность целенаправленно изменять их состав и строение, получать на их основе молекулярные материалы с широчайшим диапазоном функциональных свойств.

Несмотря на то, что комплексы металлов с основаниями Шиффа — это достаточно хорошо исследованный разными методами класс соединений, тем не менее, информация о строении на молекулярном уровне далека от полноты. Из множества синтезированных комплексов металлов с основаниями Шиффа детальная молекулярная структура получена лишь для их ограниченной части, причем исключительно в кристаллической фазе с помощью РСА. Следует отметить, что структура свободных молекул является важной характеристикой, поскольку по сравнению со структурой в кристаллической фазе она не искажена коллективным взаимодействием и позволяет наиболее достоверно судить о стерических и электронных эффектах, определяющих молекулярное строение и пространственную структуру. Представленные в диссертации исследования поддержаны грантами РФФИ (07-03-00656а и 10-03-00884а) и Министерства образования и науки РФ в рамках ФЦП «Научные и научнопедагогические кадры инновационной России» на 2009-2013 годы №П986.

Целью работы является установление детального геометрического и электронного строения некоторых комплексов 3d-металлов с основаниями Шиффа методами газовой электронографии, масс-спектрометрии и квантовой химии, а также определение энтальпии сублимации этих соединений с помощью эффузионного метода Кнудсена.

Объекты исследования: комплексы никеля, меди и цинка с основаниями Шиффа: N,N'-этилен-бис(ацетилацетонимин) H_2 acacen, N,N'-этилен-бис(салицилальдимин) H_2 (salen), N,N'-о-фенилен-бис(салицилиденимин) H_2 (saloph).

Конкретные задачи работы:

1. Масс-спектрометрическое исследование состава насыщенного пара комплексов над Zn(acacen) и M(saloph), где M=Ni, Cu, Zn.

- 2. Установление влияния природы металла в ряду Ni Cu Zn и лиганда в ряду асаcen – salen – saloph на характер фрагментации комплексов.
- 3. Определение энтальпии сублимации комплексов Zn(salen) и M(saloph), где M=Ni, Cu, Zn эффузионным методом Кнудсена с масс-спектрометрическим контролем состава пара.
- 4. Экспериментальное (электронография) и теоретическое (квантовая химия) определение строения комплексов Zn(acacen) и M(saloph), где M=Ni, Cu, Zn.
- 5. Установление природы и особенностей координационных связей M-N и M-O с помощью NBO-анализа электронной плотности.
- 6. Установление влияния природы металла в ряду Ni Cu Zn и лиганда в ряду асасеn salen saloph на геометрическое строение комплексов.
- 7. Выявление закономерностей изменения связей металл-лиганд от природы металла (в ряду Ni Cu Zn) и лиганда (в ряду acacen salen saloph).

Методы исследования: электронография, масс-спектрометрия, квантово-химические расчеты.

Научная новизна: Впервые электронографическим методом определена структура свободных молекул Zn(acacen), M(saloph), где M=Ni, Cu, Zn, и установлен их тип симметрии. Масс-спектрометрическим методом определен состав насыщенного пара над кристаллическими комплексами. Показано, что в условиях электронографического эксперимента газовая фаза состоит из мономерных молекул. Эффузионным методом Кнудсена с масс-спектрометрическим контролем состава пара исследована термодинамика процессов сублимации комплексов Ni(saloph), Cu(saloph), Zn(saloph) и Zn(salen). Проанализированы особенности строения молекул в кристалле и газовой фазе. Показано влияние природы металла и лиганда на структуру координационного фрагмента MN_2O_2 в комплексах 3d-металлов с основаниями Шиффа, а также влияние природы металла и лиганда на связи металл – лиганд.

Практическая значимость: Развитие технологий микроэлектронных устройств неразрывно связано с использованием полифункциональных материалов в виде тонких пленок. Среди большого разнообразия координационных соединений, представляющих интерес как прекурсоры для технологий осаждения тонких наноразмерных пленок, особое место занимают летучие гетероядерные комплексы типа [LnX₃M(L)], где (M(L) – комплекс с основанием Шиффа), а также соединения, из которых эти комплексы образуются. Сведения о термодинамике парообразования и составе газовой фазы комплексов с основаниями Шиффа могут оказаться полезными при практическом использовании в процессах газофазного транспорта при формировании тонкопленочных материалов. Исследования молекулярного строения таких комплексов

имеют высокую значимость для развития теоретической химии, поскольку соединения этого класса оказываются исключительно гибкими в плане их использования для молекулярного дизайна. Найденные в работе структурные параметры комплексов включены в международное справочное издание Ландольт-Бернштейн «Структурные данные свободных многоатомных молекул», в базу данных МОGADOC (Германия).

Апробация работы. Результаты работы представлены на Международных конференциях студентов, аспирантов и молодых ученых «Ломоносов-2009», «Ломоносов-2010», «Ломоносов-2011» (Москва, МГУ); научных конференциях «Молодая наука в классическом университете» (Иваново, ИвГУ, 2009, 2010 г.); IV и V школах-семинарах «Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул» (Иваново, 2009, 2011 г.); научной конференции Ивановского регионального отделения РАЕН «Социально-экономические и научно-технические проблемы развития современной России», г. Иваново, 2010 г.; V Российско-Германском семинаре по молекулярной структуре (Иваново, 2010 г.); XXIII Международном Остинском симпозиуме по молекулярной структуре, г. Остин, Техас, США, 2010 г; XIII и XIV Европейских симпозиумах по газовой электронографии (Блаубойрен, Германия, 2009 г., Москва, МГУ, 2011 г.)

Публикации. По теме диссертации опубликовано 17 печатных работ, из них 5 статей в рецензируемых журналах и 12 тезисов докладов научных конференций.

Личный вклад автора заключался в участии в электронографических и массспектрометрических экспериментах, проведении фотометрического эксперимента, обработке данных электронографического и масс-спектрометрического экспериментов, выполнении структурного анализа, проведении квантово-химических расчетов структуры и силовых полей изученных молекул, участии в обсуждении результатов исследований.

Структура и объем диссертации. Диссертация состоит из введения, пяти глав, посвященных обзору литературы, описанию экспериментальных и теоретических методов исследования, электронографическому и масс-спектрометрическому исследованию комплексов металлов с основаниями Шиффа и обсуждению результатов, а также включает раздел «Основные результаты и выводы» и список цитируемой литературы (108 наименований). Материал работы изложен на 123 страницах машинописного текста, а также представлен в виде 15 таблиц и 32 рисунков.

Автор выражает глубокую признательность своему научному руководителю проф. Гиричеву Г. В. за помощь на всех этапах работы, проф. Гиричевой Н.И., доц. Твердовой Н.В. и с.н.с. Слизневу В.В. за плодотворные дискуссии при обсуждении результатов.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Введение. Дано обоснование актуальности работы, сформулирована ее цель, отмечена научная новизна и практическая значимость.

Глава 1. Литературный обзор. В данной главе проанализированы работы по изучению строения комплексов никеля, меди и цинка с различными основаниями Шиффа методами рентгеноструктурного анализа, газовой электронографии и массспектрометрии, а также работы, посвященные изучению термодинамики сублимации комплексов 3d-металлов с основаниями Шиффа.

Глава 2. Методы исследования. Глава посвящена основам экспериментальных и теоретических методов, использованных в работе. Описана методика синхронного электронографического/масс-спектрометрического эксперимента, особенности обработки экспериментальных данных. Рассмотрен метод ионизации электронами, а также эффузионный метод Кнудсена, который применяется для изучения термодинамики сублимации комплексов с масс-спектрометрическим контролем состава газовой фазы. Кратко представлены основные детали квантово-химических расчетов: методы и базисы, которые использовались для расчета геометрических и электронных характеристик изученных молекул, а также метод анализа электронной плотности в терминах натуральных орбиталей связей (NBO).

Глава 3. Исследование строения свободных молекул Zn(acacen) и M(saloph), где M=Ni, Cu, Zn. Квантово-химические расчёты комплексов 3d-металлов с основаниями Шиффа были выполнены с помощью программ Gamess (версии PC Gamess 7.0) и Gaussian (версии Gaussian 03). Комплексы были оптимизированы методом DFT с использованием гибридного функционала (B3LYP). Остовные оболочки атомов Ni, Cu и Zn (1s2s2p) описывались релятивистскими остовными потенциалами, для описания валентных оболочек использовался валентно-трехэкспонентный базис с поляризационной f-функцией, разработанные в Институте теоретической химии Штутгартского университета. Атомы кислорода, азота, углерода и водорода описывались базисными наборами 6-31G*, TZV (дополненными диффузными p- и поляризационными dфункциями) и сс-pVTZ. Согласно результатам расчетов по оптимизации геометрии и силового поля для комплекса Zn(acacen), структура симметрии C2 соответствуют минимуму на поверхности потенциальной энергии. Молекулярные структуры Ni(saloph) (низкоспиновое состояние) и Cu(saloph) были оптимизированы в рамках симметрии C2v, мнимых частот колебаний не наблюдалось. Структура симметрии Cs для ком-

плекса Zn(saloph) имеет самую низкую энергию и соответствует минимуму на поверхности потенциальной энергии.

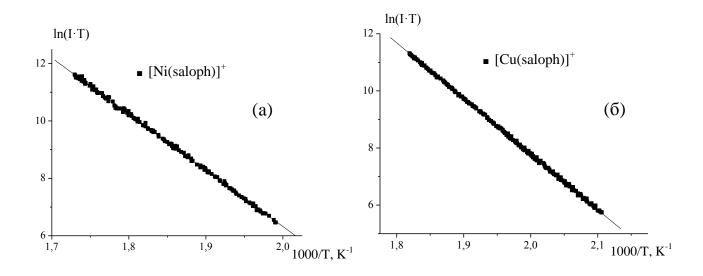
Синхронный электронографический/масс-спектрометрический эксперимент выполнялся на комплексе аппаратуры ЭМР-100/АПДМ-1 в лаборатории газовой электронографии ИГХТУ. Препараты Zn(acacen) и M(saloph), где M=Ni, Cu, Zn, были синтезированы на кафедре неорганической химии Химического Факультета МГУ им. Ломоносова проф. Кузьминой Н.П. и к.х.н. Котовой О.В. Препарат Zn(acacen) испарялся из эффузионной ячейки, выполненной из нержавеющей стали X18H10T, при T=503(5) К. Препараты Ni(saloph), Cu(saloph), Zn(saloph) испарялись из молибденовой эффузионной ячейки при T=549(5), T=549(5) и T=626(5) К, соответственно. Температуру ячейки измеряли вольфрам-рениевой термопарой ВР-5/20. Ускоряющее напряжение составляло около 80 кВ. Электронограммы снимались с двух расстояний «сопло ячейки – фотопластинка» L_1 =598 мм и L_2 =338 мм. С каждого расстояния получено по 6 электронограмм исследуемого вещества и по 2 электронограммы кристаллического стандарта ZnO. Электронограммы ZnO снимались до и после получения электронограмм исследуемого вещества с целью определения и контроля длины волны электронов. Фотометрирование электронограмм производилось с помощью модернизированного микрофотометра MD-100 (Carl Zeiss, Jena).

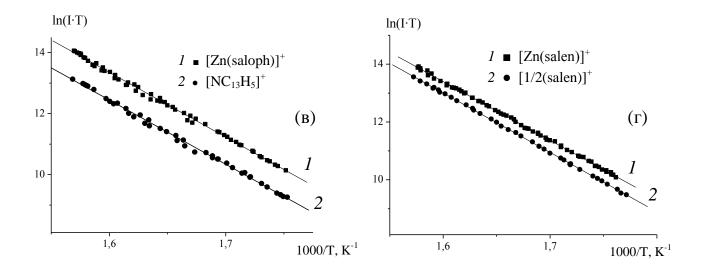
Анализ электронографических данных выполнен в предположении, что в паре присутствуют молекулы одного сорта: симметрии C_2 для комплекса Zn(acacen), симметрии $C_{2\nu}$ для комплексов Ni(saloph) и Cu(saloph) и симметрии C_s в случае комплекса Zn(saloph). При уточнении структурных параметров молекулы проводилось сопоставление экспериментальной $sM_{skcn}(s)$ и уточняемой теоретической $sM_{meop}(s)$ функций приведенной молекулярной составляющей интенсивности рассеяния методом наименьших квадратов. Критерием согласования $sM_{meop}(s)$ и $sM_{skcn}(s)$ служил фактор рас-

согласования
$$R_{\phi a \kappa mop} = \frac{\displaystyle\sum_{i}^{n} \omega_{i}(s_{i})[sM_{_{9 \kappa cn}}(s) - ksM_{meop}(s)]^{2}}{\displaystyle\sum_{i}^{n} \omega_{i}(s_{i})[sM_{_{9 \kappa cn}}(s)]^{2}}$$
, ω_{i} -весовая функция, k -масштабный множитель

Величина $R_{\rm f}$ составила 4,7 % для Zn(acacen), 4.2% для Ni(saloph), 4.6% для Cu(saloph) и 3.8% для Zn(saloph).

Глава 4. Масс-спектрометрические исследования паров комплексов 3d-металлов с основаниями Шиффа. Масс-спектры были записаны одновременно со съемкой электронограмм, что позволило осуществить контроль качественного и количественного состава газовой фазы над исследуемым веществом во время эксперимента, наблюдать за интенсивностью ионных токов и судить о стабильности концентрации


частиц. Масс-спектрометрический контроль состава пара был использован также при исследовании термодинамики сублимации комплексов эффузионным методом Кнудсена в рамках второго закона термодинамики.


Масс-спектрометрические исследования соединений показали, что вещества переходят в газовую фазу конгруэнтно. В масс-спектрах комплексов Zn(acacen) и M(saloph), M=Ni, Cu, Zn, записанных одновременно со съемкой электронограмм, были зарегистрированы ионы с массой, равной массе молекулярного иона и более легкие ионы, являющиеся результатом диссоциативной ионизации электронами мономерных молекул. Причем в масс-спектре комплекса Zn(acacen) наиболее интенсивным являлся ион, соответствующий половине лиганда (½acacen)⁺, а во всех комплексах M(saloph) - молекулярный ион [M(saloph)]⁺.

Масс-спектры насыщенного пара комплексов Ni(saloph), Cu(saloph), Zn(saloph) и Zn(salen) были изучены в интервале температур $502 \div 578$ K, $475 \div 550$ K, $571 \div 637$ K, $568 \div 634$ K, соответственно (рис. 1).

Функции ln(IT)=f(1000/T) в случае каждого соединения хорошо аппроксимируются линейными зависимостями. Равновесие в системе устанавливалось быстро, гистерезисные явления при увеличении/уменьшении температуры отсутствовали.

Рисунок 1. — Температурные зависимости токов ионов в масс-спектре насыщенных паров над: a - Ni(saloph), $\delta - Cu(saloph)$, b - Zn(saloph), r - Zn(saloph)

Глава 5. Обсуждение результатов.

Геометрическое строение комплексов 3d-металлов с основаниями Шиффа по данным методов газовой электронографии, РСА и квантово-химических расчетов. Между экспериментальными и теоретическими данными по структуре молекул наблюдается хорошее согласие. При сравнении геометрических параметров комплексов, отличающихся только координирующим атомом металла, наблюдается увеличение длин связей M-N и M-O в ряду Ni \rightarrow Cu \rightarrow Zn, и, как следствие, значительное увеличение размеров координационной полости MN_2O_2 . Причем эту тенденцию отражают, как экспериментальные, так и теоретические данные.

Как видно из табл. 1, изменение размеров полости происходит в основном за счет изменения межъядерного расстояния М-N. Изменение величин расстояний М-О выглядит менее заметным. Кроме того, для соединений цинка отчетливо прослеживается значительно большее различие в межъядерных расстояниях М-N и М-O, чем в соответствующих комплексах меди и никеля. Таким образом, строение координационной полости MN_2O_2 в комплексах никеля и меди принимает форму, близкую к квадрату, тогда как в плоском комплексе Zn(saloph) имеет отчетливо выраженную форму трапеции. Анализ комплексов никеля и меди показал, что смена лиганда в ряду асасеп – salen – saloph практически не влияет на величины межъядерных расстояний М-N и М-O. Для комплексов цинка установлено, что величина межъядерного расстояния М-N увеличивается, а расстояние М-O при этом уменьшается при переходе от Zn(acacen) к Zn(saloph).

Для комплексов никеля и меди характерна практически плоская геометрия координационного фрагмента MN_2O_2 , в то время как в комплексах цинка расположение двух хелатных фрагментов в ряду Zn(acacen)-Zn(salen)-Zn(saloph) изменяется с псевдотетраэдрического до плоского.

Таблица 1. – Геометрические параметры комплексов по данным методов газовой электронографии (ГЭ), рентгеноструктурного анализа (РСА) и квантово-химических расчетов (расч.)

асчетов (р	<u> </u>				1
		Ni(acacen) ¹	Cu(acacen) ¹	Zn(acacen)	
r(M-N)	Расч.	1.884	1.966	2.027	l L v i
	ΕЭ	1.879(10)	1.947(18)	2.012(16)	
	PCA*	1.874	1.97	1.989	N N C
r(M-O)	Расч.	1.870	1.941	1.964	
	ЕЭ	1.862(10)	1.923(17)	1.958(13)	
	PCA	1.857	1.94	1.947	
φ(NONO)	Расч.	175.1	166.1	128.1	
	ГЭ	171.3(56)	179.7(70)	123.4(48)	M(acacen)
	PCA	178.1	175.7	73.5	
		Ni(salen) ²	Cu(salen) ³	Zn(salen) ⁴	
r(M-N)	Расч.	1.876	1.975	2.073	~ J. P
	ГЭ	1.889(22)	1.927(17)	2.027 (7)	
	PCA	1.848	2.01	2.075	
r(M-O)	Расч.	1.860	1.922	1.928	
	ΕЭ	1.882(21)	1.921(15)	1.902 (7)	
	PCA	1.852	1.97	2.013	
φ(NONO)	Расч.	174.5	164.1	129.2	M(salen)
	ΕЭ	171.4(59)	176.0(97)	129.3(63)	, in the second second
	PCA	177.2	176	179.8	
		Ni(saloph)	<u>Cu(saloph)</u>	Zn(saloph)	٩
r(M-N)	Расч.	1.883	1.976	2.082)— <u> </u>
	ГЭ	1.876(19)	1.960(20)	2.072(12)	
	PCA	1.861	1.95	2.080)
r(M-O)	Расч.	1.857	1.920	1.937	
	ЕЛ	1.847(17)	1.913(17)	1.926(7)	
	PCA	1.840	1.90	1.952	
φ(NONO)	Расч.	180.0	180.0	180.0	
	ЕЛ	180.0	180.0	180.0	8 8 5 T
	PCA	178.3	171.8	160.8	M(saloph)

Величины межъядерных расстояний в (Å), углы в градусах (°). В скобках приведены величины полных погрешностей для межъядерных расстояний, которые рассчитывались по формуле $\sigma = (\sigma^2_{\text{масш}} + (2.5\sigma_{\text{MHK}})^2)^{1/2}$, где $\sigma_{\text{масш}} = 0.002r$; для углов принято $\sigma = 3\sigma_{\text{MHK}}$.

¹**Гиричев, Г. В.** Строение молекул N,N'-этилен-бис(ацетилацетониминатов) никеля(II) и меди(II), $MO_2N_2C_{12}H_{18}$, по данным метода газовой электронографии и квантово-химических расчетов / Г. В. Гиричев, Н. И. Гиричева, Н. П. Кузьмина, Ю. С. Медведева, А. Ю. Рогачев // Журн. структурной химии. -2008. -49(5). -C. 871-882.

² **Girichev, G. V.** Molecular structure of NiO₂N₂C₁₆H₁₄ from gas-phase electron diffraction and quantum chemical data / G. V. Girichev, N. I. Giricheva, N. P. Kuzmina, Y. S. Levina, A. Y. Rogachev // Jour. Struct. Chem. –2005. – 46. – P. 813–823.

 3 **Гиричева, Н. И.** Строение молекулы Cu(salen), CuO₂N₂C₁₆H₁₄, по данным метода газовой электронографии и квантово-химических расчетов / Н. И. Гиричева, Г. В. Гиричев, Н. П. Кузьмина, Ю. С. Медведева, А. Ю. Рогачев // Журн. структурной химии. -2009. -50(1). - С. 58-66.

⁴**Гиричев, Г. В.** Геометрическое и электронное строение молекулы N,N'-этиленбис(салицилальдимината) цинка(II), $ZnO_2N_2C_{16}H_{14}$ / Г. В. Гиричев, Н. И. Гиричева, Н. В. Твердова, А. О. Симаков, Н. П. Кузьмина, О. В. Котова // Журн. структурной химии. -2010. -51(2). -C. 237-245.

^{*} значение взято из Кембриджской базы кристаллографических данных

Таким образом, величины координационных связей и геометрическое строение в комплексах никеля и меди определяется в основном природой центрального атома металла, в то время как в комплексах цинка эти характеристики зависят от природы лиганда.

NBO-анализ электронной плотности. Анализ электронного строения комплексов никеля и меди показал, что величины зарядов на атомах этих металлов, существенно меньше формальной величины +2. Для комплексов цинка заряд центрального иона равен примерно +1.6. Отрицательные заряды на донорных атомах кислорода и азота оказались несколько ниже, чем в соответствующих комплексах цинка (табл. 2). В ряду Ni→Cu→Zn наблюдается увеличение положительного заряда на атоме металла, а также отрицательных зарядов на атомах азота и кислорода. Данные по распределению зарядов на атомах, составляющих непосредственную координационную сферу центрального иона металла, показали близкие значения для комплексов одного металла с различными лигандами.

	acacen			salen			saloph		
	Ni	Cu	Zn	Ni	Cu	Zn	Ni	Cu	Zn
q(M)	+1.03	+1.32	+1.63	+1.04	+1.34	+1.63	+1.06	+1.34	+1.62
q(N)	-0.55	-0.63	-0.69	-0.51	-0.59	-0.64	-0.52	-0.58	-0.63
q(O)	-0.66	-0.72	-0.80	-0.67	-0.74	-0.84	-0.66	-0.73	-0.82
Q(M-N)	0.395	0.212	0.157	0.379	0.195	0.139	0.372	0.193	0.143
Q(M-O)	0.316	0.178	0.147	0.340	0.194	0.166	0.339	0.194	0.164
q(NCCCO)	-0.89	-1.02	-1.16	-0.87	-1.00	-1.14	-0.83	-0.97	-1.10
q(NCCN)	-1.56	-1.72	-1.86	-1.48	-1.64	-1.74	-0.80	-0.92	-1.02

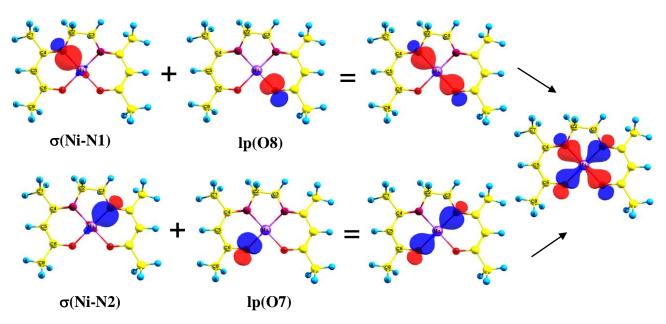
Таблица 2. - Значения зарядов (q) на атомах и порядков связей (Q) комплексов

Следует отметить, что порядки координационных связей M-N и M-O во всех рассмотренных комплексах существенно ниже порядков ковалентных связей и не превышают 0.4. Однако порядки координационных связей в комплексах никеля почти в 2 раза превышают порядки связей в соответствующих комплексах меди и цинка.

По результатам NBO-анализа связь Ni-N в комплексе Ni(acacen) образуется за счет перекрывания гибридных орбиталей атома азота и металла. В результате линейных комбинаций гибридных орбиталей образуется связывающая σ и разрыхляющая σ *-NBO.

$$\sigma(\text{Ni-N1}) = 0.3914h(\text{Ni}) + 0.9202h(\text{N1})$$

$$\sigma^*(\text{Ni-N1}) = 0.9202h(\text{Ni}) - 0.3914 h(\text{N1})$$


Поляризационный коэффициент при гибридных орбиталях атома азота при связывающей σ значительно больше, чем при гибридных орбиталях никеля. Это указывает на смещение электронной плотности на данной NBO к атому азота N1. То есть

связь Ni-N в рамках NBO-анализа может быть характеризована как сильно полярная связь. К аналогичной картине приводит анализ электронного строения комплекса Ni(salen).

Согласно NBO-анализу, связь Ni-O в комплексах Ni(acacen) и Ni(salen) образуется за счет донорно-акцепторного взаимодействия неподеленных пар атома кислорода lp(O) (донор) с разрыхляющей σ^* (Ni-N) (акцептор).

Сильное взаимодействие гибридных валентных орбиталей атомов азота, никеля и кислорода в комплексах Ni(acacen) и Ni(salen) приводит к делокализации электронной плотности по атомам N1-Ni-O8 и N2-Ni-O7 (рис. 2). Такое сопряжение способствует дополнительной стабилизации комплекса.

Рисунок 2. — Схема делокализации электронной плотности в координационном центре комплекса Ni(acacen)

NBO-анализ для комплексов меди и комплекса Ni(saloph) свидетельствует, что связь M-N, также как и связь M-O носит донорно-акцепторный характер, где в качестве доноров выступают неподеленные пары азота и кислорода, а в качестве акцепторов – $3d_{yz}$ и 4s вакантные орбитали металла.

В комплексах цинка картина распределения электронной плотности сходна с комплексами меди и Ni(saloph). Координационные связи Zn-N и Zn-O описываются донорно-акцепторным взаимодействием гибридных орбиталей атомов азота и кислорода (донор) с одной стороны, и вакантной 4s-орбитали атома цинка (акцептор) с другой.

Масс-спектрометрическое исследование комплексов 3d-металлов с основаниями Шиффа. В комплексах никеля наиболее интенсивными являются металлсо-

держащие ионы состава [M(acacen)]⁺, [M-½(acacen)]⁺, [M(salen)]⁺, [M-½(salen)]⁺, [M(saloph)]⁺. Подобная картина наблюдается и для комплексов меди, за исключением Cu(salen). В случае комплексов цинка, наиболее интенсивными ионами, зарегистрированными в масс-спектре, оказались ионы, не содержащие атом металла, в свою очередь, металлсодержащий ион [M(saloph)]⁺ преобладал лишь в масс-спектре Zn(saloph). Важно подчеркнуть, что влияние природы металла на характер фрагментации комплексов с основаниями Шиффа, а именно, на соотношение интенсивностей регистрируемых ионов, в M(saloph) проявляется слабее, чем в M(acacen) и M(salen), M= Ni, Cu, Zn, соединениях. Очевидно, что усиление π-сопряжения в хелатных фрагментах при смене лиганда (acacen)—(salen)—(saloph), является причиной увеличения прочности молекул и интенсивности сигнала молекулярного иона. Важно отметить, что только в масс-спектрах комплексов никеля Ni(acacen), Ni(salen), Ni(saloph) сохраняются высокие интенсивности металлсодержащих ионов. Наблюдаемую особенность можно объяснить максимальными порядками связей Q(Ni-N) и Q(Ni-O) по сравнению с аналогичными связями в комплексах меди и цинка.

Влияние природы металла и природы лиганда можно проследить и по значениям энтальпий сублимации комплексов. В таблице 3 представлены величины энтальпий сублимации для исследованных в работе комплексов с основаниями Шиффа вместе с литературными данными для сходных соединений.

Таблица 3. - Энтальпии сублимации комплексов с основаниями Шиффа (кДж/моль)

Ион	$\Delta H_s^{\circ}(T)$	Ион	$\Delta H_s^{\circ}(T)$	Ион ^{**}	$\Delta H_s^{\circ}(T)$
[Ni(acacen)] ⁺	$128 \pm 3 [^{1}]$ $129.1 \pm 0.9 [^{2}]$	[Cu(acacen)] ⁺	127.6 ± 0.7 [2]	[Zn(acacen)] ⁺	-
[Ni(salen)] ⁺	$150 \pm 7 [^3]$	[Cu(salen)] ⁺	175.3±2.7 [⁴]	[1/2(salen)] ⁺	$171 \pm 1^*$
	163.9±3.2 [⁴]			[Zn(salen)] ⁺	$169 \pm 2^*$ $179.6 \pm 3.7[^4]$
[Ni(saloph)] ⁺	$163 \pm 1^*$	[Cu(saloph)] ⁺	$162 \pm 1^*$	$[NC_{13}H_{5}]^{+}$	$175 \pm 5^*$
		_		[Zn(saloph)] ⁺	$176 \pm 4^*$

^{*} Погрешность в величине энтальпии сублимации принята равной 3σ

¹ **Kuzmina, N.** The heterotrimetallic complex [Ni(acacenKLa(pta)₄]: structural and thermochemical studies / N. Kuzmina, M. Ryazanov, I. Malkerova, A. Alikhanyan, A. Gleizes // Eur. J. Inorg. Chem. – 2001. – 2001(3). – P. 701-706.

^{**} Энтальпии сублимации для комплексов Zn(salen) и Zn(saloph) рассчитывались по двум ионам

² **Ribeiro da Silva, M. A. V.** Energetics of metal–ligand binding in copper(II) and nickel(II) complexes of two Schiff bases / M. A. V. Ribeiro da Silva, M. D. M. C. Ribeiro da Silva, M. J. S. Monte, J. M. Goncalves, E. M. R. Fernandes // J. Chem. Soc., Dalton Trans. – 1997. – 7. – P. 1257–1262.

³ **Алиханян, А. С.** Термодинамические характеристики гетероядерного комплекса на основе N,N-этилен-бис-(салицилальдимината) никеля (II) Ni(salen) и трис-гексафторацетилацетонато иттрия $Y(\Gamma \Phi a)_3$ / А. С. Алиханян, И. П. Малкерова, Н. П. Кузьмина, А. Глез, М. Хульве, Г. Л. Санз, И. Л. Еременко // Журн. неорганической химии. – 1999. – 44(6). – С. 969 – 972.

⁴ **Ribeiro da Silva, M. D. M. C.** Molecular thermochemical study of Ni(II), Cu(II) and Zn(II) complexes with N,N'-bis(salicylaldehydo)ethylenediamine / M. D. M. C. Ribeiro da Silva, J. M. Goncalves, A. L. R. Silva, P. C. F. C. Oliveira, B. Schroder, M. A. V. Ribeiro da Silva // Journal of Molecular Catalysis A: Chemical. – 2004. – 224(1-2). – P. 207–212.

Анализ данных, приведенных в таблице 3, показывает, что увеличение числа ароматических групп в лиганде acacen \rightarrow salen \rightarrow saloph приводит к небольшому уменьшению летучести комплексов. При этом обнаружено, что при переходе от M(acacen)-комплексов к M(saloph)-комплексам термическая стабильность исследованных соединений, наоборот, возрастает.

В ряду M(salen) и M(saloph) комплексов наблюдается уменьшение летучести соединения при замене атома металла с никеля на цинк. По-видимому, это вызвано различной кристаллической структурой комплексов. Комплексы Ni(acacen) и Cu(acacen) имеют одинаковое строение в кристалле, подобно комплексам никеля и меди с основанием H₂saloph. Как показывают экспериментальные данные, энтальпии сублимации для этих соединений практически одинаковы. Комплексы Cu(salen), Zn(salen) и Zn(saloph) в кристалле димеризованы, координационное число центрального атома равно пяти и координационная полость имеет искаженную квадратно-пирамидальную геометрию. Энтальпии сублимации для этих соединений близки по значению, однако, их величина выше мономерных комплексов никеля и меди с основаниями H₂acacen и H₂saloph.

Основные результаты и выводы.

- 1. Масс-спектрометрическим методом определен состав насыщенного пара над кристаллическими комплексами Ni(saloph), Cu(saloph), Zn(saloph), Zn(acacen). Показано, что в условиях электронографического эксперимента газовая фаза всех соединений состоит из мономерных молекул.
- 2. Выявлено влияние природы металла и лиганда на характер фрагментации комплексов при ионизации электронами. Показано, что в масс-спектрах соединений цинка с различными основаниями Шиффа (U_{иониз}=50 В) наибольшей интенсивностью обладали ионы, не содержащие атом металла, тогда как для соединений меди и никеля (за исключением Cu(salen)) отмечено преобладание металлсодержащих ионов.
- 3. Эффузионным методом Кнудсена с масс-спектрометрическим контролем состава пара определены энтальпии сублимации соединений: ΔH_s (T): Ni(saloph) 163 \pm 1 кДж/моль (502÷578 K); Cu(saloph) 162 \pm 1 кДж/моль(475÷550 K); Zn(saloph) 176 \pm 4 кДж/моль(571÷637 K); Zn(salen) 169 \pm 2 кДж/моль(568÷634 K).
- 4. Экспериментально (газовая электронография) и теоретически (DFT-расчеты) исследовано строение молекул Zn(acacen) и M(saloph), M=Ni, Cu, Zn. Установлено, что комплекс Zn(acacen) имеет геометрическую структуру симметрии C_2 , Ni(saloph) и Cu(saloph) C_{2v} , Zn(saloph) C_s .

- 5. Выполнен NBO-анализ электронной плотности комплексов, рассмотрена природа координационных связей M-N и M-O.
- 6. Показано влияние природы металла и лиганда на строение координационного фрагмента MN₂O₂ комплексов 3d-металлов с основаниями Шиффа. Установлено плоское строение координационного узла в комплексах никеля и меди и неплоское в комплексах цинка. Установлено увеличение длин связей M-N и M-O в ряду Ni→Cu→Zn.

Публикации по теме диссертации:

Публикации в рецензируемых журналах, рекомендованных ВАК:

- 1. Гиричев, Г. В. Строение молекулы N,N'-этилен-бис(ацетилацетонимината) цинка (II), $ZnO_2N_2C_{12}H_{18}$, по данным метода газовой электронографии и квантовохимических расчетов / Г. В. Гиричев, Н. И. Гиричева, Е. Д. Пелевина, Н. В. Твердова, Н. П. Кузьмина, О. В. Котова // Журн. структурн. Химии. -2010.-51(1).-C. 29-37.
- 2. Girichev, G. V. Molecular structure of N,N'-o-phenylene-bis(salicylideneaminato) zinc(II) according to gas-phase electron diffraction data and quantum-chemical calculations / G. V. Girichev, N. I. Giricheva, N. V. Tverdova, E. D. Pelevina, N. P. Kuzmina, O. V. Kotova // J. Mol. Struct. -2010.-978.-P.178-186.
- 3. Tverdova, N. V. Molecular structure of N,N'-o-phenylene-bis(salicylideneaminato) copper(II) studied by gas phase electron diffraction and quantum-chemical calculations / N. V. Tverdova, E. D. Pelevina, N. I. Giricheva, G. V. Girichev, N. P. Kuzmina, O. V. Kotova // Structural Chemistry. -2011.-22.-P.441-448.
- 4. Tverdova, N. V. Molecular structures of 3d metal complexes with various Schiff bases studied by gas-phase electron diffraction and quantum-chemical calculations / N. V. Tverdova, E. D. Pelevina, N. I. Giricheva, G. V. Girichev, N. P. Kuzmina, O. V. Kotova // J. Mol. Struct. -2012. -1012. -P.151-161.
- 5. Твердова, Н. В. Масс-спектрометрическое исследование процесса парообразования N,N'- о-фенилен-бис(салицилиденимината) никеля(II), меди(II), цинка(II) и N,N'- этиленбис(салицилальдимината) цинка(II) / Н. В. Твердова, Е. Д. Пелевина, А. В. Краснов, Ю. А. Жабанов, Г. В. Гиричев, Н. П. Кузьмина, О. В. Котова // Журн. Физич. Химии. -2012. -86(5). -P. 911-920.

Другие публикации:

- 1. Пелевина, Е. Д. Электронографическое исследование строения молекулы N,N'-этилен-бис(ацетилацетонимината) цинка(II), $ZnO_2N_2C_{12}H_{18}$ // Материалы докладов Международной конференции студентов, аспирантов и молодых ученых «Ломоносов-2009». Москва, МГУ. 2009. [Электронный ресурс] http://www.lomonosov-msu.ru/2009/
- 2. Пелевина, Е. Д. Строение тетрадентатных комплексов цинка по данным метода газовой электронографии и квантово-химических расчетов // Тезисы докладов научной конференции «Молодая наука в классическом университете». Иваново. 2009. С.67.
- 3. Твердова, Н. В. Молекулярное строение N,N'-о-фенилен-бис(салицилиденимина) цинка по данным метода газовой электронографии и квантово-химическим расчетам / Н. В. Твердова, Г. В. Гиричев, О. В. Котова, Н. П. Кузьмина, Е. Д. Пелевина // Материалы IV школысеминара «Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул». Иваново. 2009. С.63
- 4. Твердова, Н. В. Теоретическое исследование ряда комплексов цинка с основаниями Шиф-

- фа / Н. В Твердова, Г. В. Гиричев, Е. Д. Пелевина // Материалы IV школы-семинара «Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул». Иваново. 2009. C.300
- 5. Пелевина, Е. Д. Влияние природы лигандов на геометрическое строение комплексов цинка // Материалы докладов Международной конференции студентов, аспирантов и молодых ученых «Ломоносов-2010». Москва, МГУ. 2010. [Электронный ресурс] http://www.lomonosov-msu.ru/2010/
- 6. Пелевина, Е. Д. Влияние природы центрального иона на геометрическое строение комплекса // Тезисы докладов научной конференции «Молодая наука в классическом университете». Иваново. 2010. C.84
- 7. Гиричев, Г. В. Молекулярное строение Cu(saloph) и Ni(saloph) по данным метода газовой электронографии и квантово-химических расчетов / Г. В. Гиричев, Н. И. Гиричева, Н. В. Твердова, Е. Д. Пелевина, Н. П. Кузьмина, О. В. Котова // Научная конференция РАЕН «Социально-экономические и научно-технические проблемы развития современной России». Иваново. 2010. С. 128-131.
- 8. Girichev, G. V. Molecular structure of N,N'-o-phenylene-bis(salicylideneaminato) zinc(II), Zn(saloph), in gas-phase and in crystal / G. V. Girichev, N. I. Giricheva, N. V. Tverdova, E. D. Pelevina, N. P. Kuzmina, O. V. Kotova // Book of abstract twenty-third Austin Symposium on molecular structure. The University of Texas, Austin, Texas U.S.A. -2010. P. 80.
- 9. Пелевина, Е. Д. Термодинамика сублимации комплексов M(saloph) (M= Ni, Cu, Zn) и Zn(salen) // Материалы докладов Международной конференции студентов, аспирантов и молодых ученых «Ломоносов-2011». Москва, МГУ. 2011. [Электронный ресурс] http://www.lomonosov-msu.ru/2011/
- 10. Твердова, Н. В. Молекулярная структура комплекса Ni(saloph) по данным метода газовой электронографии и квантово-химических расчетов / Н. В. Твердова, Е. Д. Пелевина, Н. И. Гиричева, Г. В. Гиричев, Н. П. Кузьмина, О. В. Котова // Материалы V школы-семинара «Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул». Иваново. 2011. С. 171-175.
- 11. Твердова, Н. В. Термодинамика сублимации комплексов Ni(saloph), Cu(saloph), Zn(saloph) и Zn(salen) / Н. В. Твердова, Е. Д. Пелевина, А. В. Краснов, Ю. А. Жабанов, Г. В. Гиричев, Н. П. Кузьмина, О. В. Котова // Материалы V школы-семинара «Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул». Иваново. 2011. С. 175 -180.
- 12. Pelevina, E. D. The structure of N,N'-o-phenylene-bis(salicylideneaminato) nickel (II), Ni(saloh): a gas-phase electron diffraction and quantum chemical study / E. D. Pelevina, N. V. Tverdova, G. V. Girichev, N. P. Kuzmina, O. V. Kotova // Book of abstract 14th European Symposium on Gas Phase Electron Diffraction. Moscow, Lomonosov Moscow State University. 2011. P. 72.